
Volume:4 Issue:11, November 1999

The World’s Leading Java Resource

TM

HOW TO SURVIVE YOUR FIRSTCORBA PROJECT!

EJB Home: The Business Advantage of EJB Jason Westra
More on developing portable EJB applications 8

Cover Story: An Online Airline Ticket Store Ajit Sagar
Leasing and Flying: This fictitious store allows
passengers to lease equipment for the duration of a flight 18

Java Memory Management: Jeff Richey and Jeff Scroggin

How Not to Trip Over Your Own Footprint!
Minimize the memory footprint to suit many environments 28

Internet Applications: Real-Time Rolf Kamp & Thomas Czernik

Web-Based Applications with Java and CORBA
Java’s OO language is well suited for implementing CORBA components 38

Oracle JServer Scalability and Performance Jeremy Lizt
This new breed of JVM provides what’s needed
for large-scale enterprise applications 66

Calling MS Excel Via the Java Native Interface Allan K. Green
A hybrid application, but the technique works with any COM object 72

E-Java: Serving Business Applications Ajit Sagar
Application servers occupy a prominent place in
multitier computing as well as in the world of Java-based e-commerce 78

CLIENT

Login Manager

MIDDLE TIER

Catalog

Customer
Profile

Database

Products
Database

Shopping
Cart

Personal
Profile

Manager

Payment
Manager

Order
Manager

To Order
Services

Merchandise
Sales and
Leasing
Broker

UnlSync

Security

UnlSync

Security

Multi
User

Multi
User

Objects

Create
Tables

Transactions

Update
Data

Read
Only

DISK MEMORY

SYS-CON
PUBLICATIONS

Java COM

From the Editor
My Forté

by Sean Rhody pg. 5

Straight Talking
Strange...But True!

by Alan Williamson pg. 14

Widget Factory
Components, and
Creating a Custom

Property Editor
by Jim Crafton pg. 32

Java and DCOM
Part 2

by Rick Hightower pg. 50

CORBA Corner
CORBA Project Survival

by Steve Tockey pg. 58

From the Industry
J2EE Standard

Dramatically Changes
Application Server Market

by David Skok pg. 7

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 2000

SYS-CON Radio
Interview with
Peter Coad of
Object International
pg. 46

Leasing and Flying

SYS-CON Radio and

Java Developer’s Journal

media cosponsors of

Java Business Conference

New York City

Dec. 7-9, 1999

An Online
Airline
Ticket Store
PART 4

Java COM

2 NOVEMBER 1999

BEA
weblogic.beasys.com

3NOVEMBER 1999

Java COM

Protoview
www.protoview.com

Java COM

4 NOVEMBER 1999

Sybase, Inc.
www.sybase.com

5NOVEMBER 1999

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

H
ere’s an old joke. A guy in a strange town needs to get a haircut.
There’re only two barbers in the town, but the guy doesn’t know
either of them. Which one does he pick? The answer is the guy with
the worst haircut. Why? Because neither barber can cut his own hair,
so the guy with the worst haircut is the better barber.

What’s this got to do with Java? Well, it reminds me of the strange posi-
tion that Sun has been in for the past several years. I think Java is one of the
most profound software concepts to ever come along, and there’s no ques-
tion that Sun is the proud owner. I’m very happy with the way the language

has been improved over the past few years. And anyone who reads JDJ knows that I think Enter-
prise Java Beans, or Java 2 Enterprise Edition, is a masterpiece.

But there’s always been a fly in the ointment with Sun. While the language is great, and their
vision impressive, let’s face it – their tools stink. I hate to be that blunt, but in my opinion that’s the
way it is. I spend a good deal of time on each assignment reevaluating which development tool to
use. There’s a gang of three playing functionality leapfrog out there, and no matter where I go,
someone has a favorite. But that gang of three is IBM, Inprise and Symantec. Sun isn’t in there.

This shouldn’t be too surprising in and of itself. Sun is first and foremost a hardware com-
pany. And if you’ve been reading faithfully, you know that I think Java is ultimately designed
to sell hardware. But the point remains that while Sun has done a fantastic job crafting a new
language, and an even better job of making it run anywhere and marketing that vision, they’re
not a software tools company.

I guess it’s more surprising that IBM is in the gang, coming from the same hardware orien-
tation. But the IBM guys have embraced Java so hard they like to refer to themselves as the
“true Java leaders.” I’ll bend your ears (or eyes) some other time on the IBM story.

Probably the most surprising thing of all is that it’s taken Sun several years to realize that
they don’t have the expertise in tool development to be more than a bit player. Let’s face it –
most developers use Windows to write code. And it’s the guys that have been making windows
development tools for years, Inprise and Symantec, that have captured the early lead in pro-
viding development tools.

So it came as no surprise to me that Sun recently acquired Forté. For those of you not famil-
iar with Forté, let me help. Forté has been in distributed computing for several years, making
a high-end tool that generated C++ code and could dynamically partition an application to
run in various places. My friends who worked with Forté say that it can do some fairly sophis-
ticated things, but there’s a bit of a learning curve involved.

Forté saw the writing on the wall some time back and started working on a Java version of
their product, which is now known as SynerJ. I haven’t seen this product yet, but I’m going to
make it a point to get a copy so we can review it.

But that doesn’t really matter, at least not right now. The important thing is that Sun has rec-
ognized their deficiency and has taken steps to correct it. Perhaps that also explains the large
investment Microsoft made in Inprise. Far from the bailout that they did for Apple, for which
they are the largest single software vendor, this investment might have been a blocking play
to keep Sun from acquiring Inprise. Thus Sun had to get another tool.

Only time will tell whether Forté will turn out to be a tool that Sun can use to contend with
the rest of the gang. While Sun has the cachet of being the thought leader in Java, the other
vendors have captured most of the market. It’s going to be interesting to watch Sun try to over-
come this lead. In the meantime, I need to get a haircut. Anybody know a good barber?

My Forté

F R O M T H E E D I T O R

sean@sys-con.com

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSOCIATE EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
JIM CRAFTON, THOMAS CZERNIK, ALLAN K. GREEN,

RICK HIGHTOWER, ROLF KAMP, JENNIFER NESTOR, SEAN RHODY,
JEFF RICHEY, AJIT SAGAR, JEFF SCROGGIN, DAVID SKOK,

STEVE TOCKEY, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
CHIEF FINANCIAL OFFICER: IGNACIO ARELLANO
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

SYS-CON RADIO EDITOR: CHAD SITLER
WEBMASTER: ROBERT DIAMOND

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE: SIAN O’GORMAN
ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Periodicals Postage rates are paid at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

AUTHOR BIO
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation,

where he specializes in application architecture – particularly distributed systems.

?

LETTER TO THE EDITOR...
Sean:

Thanks for a quality publication; it’s “meaty.” In reference
to your covering M$ DCOM: you are clearly being open-mind-
ed – but sometimes that is not appropriate.

We all deal with “Poor Bill’s” extortions; we all need to bend
to the majority (however wrong) or else be destroyed. BUT...

When we are studying in our chosen scientific discipline
(e.g., JAVA), we do not necessarily need to include those who
try to pervert and obscure our science.

You are not a strictly “scientific” journal so you refer to
the (very) popular “trash” we all must live with. BUT...

When the “trash” is so deliberately antithetical to the
community you serve…when it is deliberately trying to
destroy the community [you] serve, you must present them
as the threat they are. If you have to catch flak, catch it for
telling the (unpopular) “truth”(e.g., Microsoft is a malicious
but powerful player) instead of for “fairness” (e.g., Microsoft
is just another vendor).

Good luck,
Brian Hayes, a011882@ibm.net

Java COM

6 NOVEMBER 1999

Compuware
NuMega

www.compuware.com/numega

7NOVEMBER 1999

Java COM

One
Realm
www.one-

realm.com/jdj

E
arlier this year I wrote an article describing how Enterprise JavaBeans had
impacted the application server market, causing a convergence between
Web application servers and distributed object and transaction servers.
With the advent of the J2EE (Java 2 Enterprise Edition) standard, we’re
about to witness another seismic shift in this market.

It’s worth looking at what J2EE is – and isn’t. J2EE builds on the Java 2 standard, and adds spec-
ifications for most of the important programming interfaces in an application server. Key inter-
faces are EJB for middle-tier logic, and servlets and Java Server Pages (JSP) for dynamically gener-
ated HTML pages. Other APIs include JNDI (naming and directories), JMS (messaging), JavaMail,
JTA/JTS (transactions) and RMI-IIOP (remote communications protocol).

While the J2EE specifica-
tion comes with a reference
implementation and compli-
ance tests, it’s important to
understand that J2EE doesn’t
cover a number of APIs and
functions that are central to
today’s application servers.
For example, there are no
specifications for how to con-
nect to legacy or nonrelation-
al data sources; how to create
applications that interact
with other systems via XML;
how to cluster, load-balance
and fail-over a server; or how
to manage a server.

Benefits of Standardization for Customers
From early indications it appears that the J2EE standard will do for application servers what

SQL did for relational databases. From a customer’s standpoint, industry standardization leads to
the following important benefits:
• Cross-vendor portability, which lowers customer risk by eliminating vendor dependency; skills

are also portable
• Large aftermarket of third-party software and components
• Wide range of tools and supporting products
• Large pool of skilled developers
• Readily available training, books and information

Reusable J2EE components will bring choice in a competitive market. Developers will assemble
applications using a variety of commercially available J2EE components mixed with their own
custom components.

J2EE Splits the Market in Two
J2EE has been adopted by key players in the application server market, and has been enthusi-

astically embraced by the Web development community. The only exception is Microsoft, which is
pursuing its own strategy (DNA and COM+). Microsoft may not gain a great deal of the market due
to the following:

WRITTEN BY DAVID SKOK

F R O M T H E I N D U S T R Y

J2EE Standard Dramatically Changes
Application Server Market

J2EE CAPABILITIES

Performance Mgt. ToolsReliability

Intergrated
Development

Tools

VALUE ADD

E-Commerce
Framework

APPLICATION LAYER

Portal
Framework

B-to-B Framework
(XML, etc.)

Enterprise
Application
Connections

Content
Management

FIGURE 1 Three layers of vendor differentiation

AUTHOR BIO
David Skok, chairman and founder of SilverStream Software, Inc., holds a BS honors degree from the University of Sussex, England.

dskok@silverstream.com

—continued on page 56

WRITTEN BY
JASON WESTRA

The Business Advantage of EJB PART 2

E J B H O M E

L
ast month, in EJB Home, I covered the business advantage of
Enterprise JavaBeans’ portability from a high level. First I
discussed the various types of portability.Then I covered (1)
the portability goals the creators of EJB had in mind when
developing the specification and (2) how your business can
achieve a competitive edge through EJB.This month I’ll fin-
ish up the discussion of EJB portability from a developer’s
perspective.

More on developing portable EJB applications

Java COM

8 NOVEMBER 1999

Avoiding Portability Pitfalls in EJB
While the EJB specification 1.0/1 has

laid the foundation for building portable
enterprise beans, there’s much left to be
specified before true interoperability
will be a reality. The EJB specification is
vague in a number of areas important to
EJB portability, including a container
provider’s responsibilities, multiple-
vendor EJB server integration, security,
distributed/asynchronous event notifi-
cation and mappings for COM integra-
tion.

I’m not going to bash EJB for its lack
of portability this month. Besides, if you
want to read articles that downplay EJB,
you’re reading the wrong magazine (and
the wrong author)! I will, however, offer
a number of tricks, traps and tips that I
and my colleagues have encountered
when building portable EJBs. Add these
techniques to your armament and you’ll
shield yourself from many pitfalls in EJB
portability to date.

Dos and Don’ts of EJB Portability
When you were a child, your mother

or father probably separated your
world into dos and don’ts, such as “Do
your homework!” and “Don’t put gum
in your sister’s hair!!” This is a nice
model for describing good and bad
software development techniques as
well; thus, for your enjoyment, I’ve
made a list of dos and don’ts on the
topic of EJB portability. The list is defi-
nitely not complete and I’d love feed-
back on “gotchas” that you’ve encoun-
tered in your experience no matter the
EJB server. Maybe a second article list-
ing reader encounters could be com-
piled in the future.

If you don’t recall last month’s cover-
age of the wrapper design pattern, you’ll
want to dust off your October issue of
JDJ and reread Part 1 on the topic of EJB
portability. For the rest of you…hold
onto your “wrapper.” Not only is a wrap-
per a better place for your gum than
your sister’s hair but, as you’ll see, the
wrapper design pattern will play a key
role in the portability of your enterprise
beans!

Don’ts
Proprietary Value-Add Features

Don’t use hard-coded references to a
particular application server’s propri-
etary features. J2EE is aimed at provid-
ing the APIs necessary for you to build
portable, distributed applications to
solve diverse business problems. How-
ever, it was created after many applica-
tion server vendors had already imple-
mented their own value-add features
into their products. The problem inher-
ent in these features is vendor lock-in, a
problem EJB (and J2EE) looks to solve!
Following is a list of value-add features
to be wary of.
• Proprietary event models: Examples

of proprietary event models include
WebLogic Events and the Novera Inte-
gration Server’s Event Components.
The EJB specification says nothing
about asynchronous event notifica-
tion (EJB is a transactional component
model, while events are usually con-
sidered nontransactional). Because
certain business problems require
asynchronous communications along
with publish and subscribe mecha-
nisms, event models are an often
implemented proprietary feature.

• Nested transactions: To provide back-
ward compatibility with existing
transaction monitors and middle-
ware, the EJB specification supports
only flat transactions. Some EJB
servers (I won’t mention names, but
the color blue comes to mind) may
tout their value-add “nested transac-
tion” support. Buyer, beware!

• System management facilities that
aren’t Java Management API (JMAPI)
compliant: Coding special manage-
ment interfaces into an enterprise
bean to monitor performance, or oth-
erwise, will be disastrous when mov-
ing the bean to another EJB server.

• Shared services: EJB has no concept of
shared services that hold state and are
accessible by all clients. If this feature
is necessary in your application, you’ll
have to look beyond EJB, possibly to
value-add features in your applica-
tion server, such as Novera’s Regis-
tered Objects and Daemons.

• Proprietary application server “login”
techniques: Often an application serv-
er requires a client to make a connec-
tion to it via a proprietary login object
or JavaBean. The login not only estab-
lishes a connection to the application
server, but performs necessary securi-
ty checks on the user as well. Coding
logins to a particular application serv-
er will tie you to this vendor and hin-
der an easy move to another applica-
tion server if the future demands it.
Thus the code in your enterprise
beans needs to be portable, and you
also have to think about the portabili-
ty of your client code when designing
for minimal impact from one applica-
tion server to another.

9NOVEMBER 1999

Java COM

ObjectSwitch
www.objectswitch.com

E J B H O M E

Java COM

10 NOVEMBER 1999

Java Native Interface
This is an easy one. When building a

portable EJB, don’t implement JNI code
in your beans. Although it’s a necessary
feature for Java to make inroads into
Wintel applications, JNI hinders plat-
form portability for your EJB.

Bean-Managed Persistence
If you’re concerned about persistence

portability, don’t use bean-managed
persistence in your entity beans. The
August column of EJB Home (JDJ Vol. 4,
issue 8) warned about the disadvantages
of bean-managed entity beans. When
coding an entity bean with bean-man-
aged persistence, you have the potential
of tying yourself not only to a particular
database, but also to a particular EJB
server by utilizing the EJB server’s con-
nection management features.

Bean-Managed Transactions
While we’re on the subject of bean man-

agement....Don’t develop enterprise beans
that use bean-managed transactions (e.g.,
TX_BEANMANAGED) unless absolutely
necessary. Once a bean is coded to use
such transactions, you’re stuck with this
decision. You won’t be able to switch to
another transactional property during
deployment! An enterprise bean with a
transactional property of TX_BEANMAN-
AGED may also unknowingly tie itself to an
EJB server’s implementation of a transac-
tion service. As a reminder, if you’re using
bean-managed transactions, don’t nest
transactions in your Enterprise JavaBeans!

From the last two “don’ts” you can see
there’s a trend here – bean-managed is
generally a portability liability and
requires complex implementations. On
the other hand, the EJB component
model for development and deployment
of server-side components promotes
portability while sheltering fledgling
developers from the nuances of transac-
tion management or object storage.

Dos
Proprietary Value-Add Features

Instead of using an application serv-
er’s proprietary features, use the Java
Platform for the Enterprise APIs (J2EE)
offered by your application server. While
too new to be standard across all appli-
cation servers, these APIs will be offered
in most servers in the near future. If you
must use an application server’s propri-
etary features, use a wrapper that maps
to the API as best you can to encapsulate
calls to these features. Wrappers help to
localize proprietary code, so when your
EJB server becomes J2EE compliant,
you’ll have minimized your changes to a
few classes and methods.

Note: Even some Java Enterprise APIs
may need to be wrapped to be truly
portable across application server ven-
dors! For instance, to access an enter-
prise bean, you go through the bean’s
home interface, which acts as a factory
to give you a handle to your EJB. Howev-
er, you first have to locate an enterprise
bean’s home interface by calling through
the Java Naming Directory Interface
(JNDI). The JNDI requires you to specify
the InitialContextFactory to be used to
perform a lookup on your enterprise
bean’s home. The parameter you pass
for the InitialContextFactory corre-
sponds to the EJB server that the enter-
prise bean is currently deployed in; thus
it is inevitably proprietary to your cur-
rent EJB server.

To avoid references to a particular
vendor’s InitialContextFactory and ease
your pain when moving to a different
EJB server, wrap calls to the EJB server’s
InitialContextFactory within your own
class, such as the class in Listing 1.

This wrapper is fairly basic, but does
the job of a wrapper by localizing calls to
an EJB server vendor’s InitialCon-
textFactory. When getContext() is called,
the wrapper uses its current values for
user, password, url and contextfactory
to return a valid InitialContext object.
The InitialContext, of course, is used to
perform a lookup of your enterprise
bean’s EJBHome interface. If your prod-
uct contains thousands of JNDI lookups,
you can see how the EJBContextWrap-
per would minimize your struggle to
migrate to another EJB server.

To use the context wrapper, import it
into your Java IDE of choice and simply
modify the JNDIConf.properties – specifi-
cally, the name of the EJB vendor’s Initial-
ContextFactory in question. In the follow-
ing code you can see that I have set the url
and contextfactory properties to point to
the BEA WebLogic application server
where my enterprise beans are deployed.

url=t3://localhost:7001
contextfactory=weblogic.jndi.Ten-
gahInitialContextFactory
user=
password=

I’ve left the user and password empty as
they’re not required values to get an Ini-
tialContext returned. Following is the clas-
sic example of the AccountBean (getting
as old as hello, world, wouldn’t you
agree?). This code gets a handle to the
AccountHome through the Context object
returned via the EJBContextWrapper.

Context ctx = EJBContextWrapper.get-
Context();

// Contact the AccountHome through
JNDI.
AccountHome home = (AccountHome)
ctx.lookup(“AccountJNDIName”);

While serving our purpose for this arti-
cle, the EJBContextWrapper could be
enhanced in a number of ways. For
instance, you could include more over-
rides for added user flexibility. Also, to
support disparate EJB server vendors, you
could add a dynamically loaded hashtable
that contains each deployed enterprise
bean’s EJB server context information
keyed by the bean’s JNDIHome name. This
would enable you to find the correct EJB
server in the enterprise environment host-
ing the enterprise bean in question – for
instance, by passing a java.lang.String
argument into getContext() (i.e., getCon-
text(String JNDIName)). This is used to
look up the correct settings from the
hashtable. This technique is needed only
if you have multiple EJB servers running
under different naming services in your
enterprise.

Wrap Native Code
You want your business logic to

remain portable! To do this, separate
your business logic from native code
calls by making a separate portable EJB
that wraps a legacy/JNI EJB. This gives
anyone needing access to the legacy
code the benefits of EJB – namely, loca-
tion independence, transaction support
and lifecycle management – while keep-
ing the business logic in a portable
enterprise bean.

While EJB builds
on Java’s claim

to fame of
platform

portability, there
are a number

of nuances to be
aware of when

building portable
enterprise beans

‘‘

’’

11NOVEMBER 1999

Java COM

Enterprise Soft
www.enterprisesoft.com

Container-Managed Persistence
Instead of using bean-managed per-

sistence, offload persistence responsi-
bilities to the EJB container by utiliz-
ing container-managed persistence
for everything possible. In some cases
a query may get too complex to be
handled through the EJB server’s con-
tainer and custom database code is
thus unavoidable. However, for a large
percentage of your persistence needs
you should be able to take full advan-
tage of EJB’s component model and
map your entity beans at deployment
time to their respective storage mech-
anism(s).

Container-Managed Transactions
Instead of writing transaction code in

your bean, concentrate on its business
logic and leave transaction manage-
ment up to the EJB container. Deter-

mine the transactional behavior of your
EJBs at deployment time and keep your
enterprise beans flexible.

Lowest Common Denominator
There’s no silver bullet solution to EJB

portability. The answer lies in the Low-
est Common Denominator approach,
which says, “Do not use a feature that is
not widely available among vendors or
an industry recognized standard.” To
use the LCD approach when building
portable enterprise beans, use only
those features designated mandatory in
the current EJB specification. This will
ensure that all compliant EJB servers
will offer your enterprise bean the ser-
vices it needs to execute properly.
The LCD approach applies to other
APIs besides the EJB specification. It
assumes you wouldn’t incorporate pro-
prietary features from your application

server vendor into your application
either.

Summary
While EJB builds on Java’s claim to

fame of platform portability, there are a
number of nuances to be aware of when
building portable enterprise beans. To
ensure that the next enterprise neans
you develop are portable and add busi-
ness value to your users, make sound
architectural decisions, utilize design
patterns like the “wrapper” as portabili-
ty enablers, and follow the tips listed
above.

As mentioned, this list of EJB porta-
bility tricks isn’t exhaustive by any
means. I look forward to hearing from
everyone who’d like to share their expe-
riences.

E J B H O M E

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions. jwestra@uswestmail.net

Java COM

12 NOVEMBER 1999

import javax.naming.InitialContext;
import javax.naming.Context;
import java.util.Properties;
import java.io.FileInputStream;

// EJBContextWrapper is a utility class to service requests
// for a JNDI context. It loads JNDI lookup properties from
// a properties file, or uses defaults when none are preset.
// It also allows the properties to be bypassed by calling
// overrides of getContext()

public class EJBContextWrapper extends java.lang.Object
{

private static String url = "";
private static String factory = "";
private static String password = "";
private static String user = "";

static {
try {
// load in the JNDI settings from configuration file
FileInputStream in = new FileInputStream("JNDIConf.proper-
ties");
Properties props = new Properties();
props.load(in);
in.close();

url = props.getProperty("url");
factory = props.getProperty("contextfactory");
user = props.getProperty("user");
password = props.getProperty("password");

} catch (Exception ex) {
// defaults
url = "t3://localhost:7001";
factory = "weblogic.jndi.TengahInitialContextFactory";
user = "";
password = "";

System.out.println("Failed to initialize EJBContextWrapper "+
"properties. Using defaults.");

System.out.println("url = "+url
+" factory = "+factory
+" user = "+user
+" password = "+password);

}

}

// constructor, do not let this get instantiated

public EJBContextWrapper ()
{}

// getContext() override that uses loaded values to get a
// context in JNDI

public static InitialContext getContext() throws Exception
{
return getContext(url, factory, user, password);

}

// getContext() override that uses specified user/pwd and
// loaded url/factory to get a context in JNDI

public static InitialContext getContext(String aUser, String
aPwd) throws Exception
{
return getContext(url, factory, aUser, aPwd);

}

// getContext() override that uses specified parameters to
// get a context in JNDI

public static InitialContext getContext(String aUrl, String
aFactory, String aUser, String aPwd) throws Exception
{
Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY, aFactory);
p.put(Context.PROVIDER_URL, aUrl);

if (user != null || user != "") {
p.put(Context.SECURITY_PRINCIPAL, aUser);

if (password == null)
password = "";

p.put(Context.SECURITY_CREDENTIALS, aPwd);
}

return new InitialContext(p);
}

}

Listing 1: EJBContextWrapper

13NOVEMBER 1999

Java COM

Blue Sky
www.blue-sky.com

Java COM

A stew with some peculiar ingredients

14 NOVEMBER 1999

WRITTEN BY
ALAN WILLIAMSON

Strange...But True!

T
his has been a busy and bizarre month. A number of weird
and wonderful things have happened, and I’ll take you
through them one by one.

S T R A I G H T T A L K I N G

If you remember, last month I
promised to tell you about a strange ren-
dezvous one of our chaps had with a
Microsoft person. As regular readers
know, we’re based out in the back of
beyond in the middle of the Scottish
lowlands. We’re the only software com-
pany for over a hundred miles in any
direction, and it’s a fact of life that you
don’t bump into many developers out
on their lunch break. So you can imag-
ine our surprise when Keith came in one
day and announced he’d met a lawyer
who worked for Microsoft at the local
pub the night before. Hot damn.

Now we all know that Microsoft isn’t
the most popular company in the world
of Java. With the present court case and
what have you, the majority of the Java
community isn’t too happy with
Microsoft’s vision for the future. You also
know that I have never been quiet about
my thoughts on the whole issue, and
have often been quite outspoken in this
very column. So when one of my chaps
“accidentally” bumps into a Microsoft
lawyer in our neck of the woods, you
have to be concerned. So far we’ve heard
nothing more, but I’ll keep you posted
on any developments in this area.

For many a budding actress the draw
of Hollywood is sometimes so great that
they’ll take on nearly any job to try and
succeed. A number of mainstream
actresses have questionable appear-
ances on their résumés. Well, in our dis-
tant past we have a similar David “Red
Shoe Diaries” Duchovny episode that
has come back to haunt us.

Back when we started out, we had a
lot of expenses to cover, most notably
the rent and the cost of the bandwidth.
Since Java was very slow at the start, we
had to do a number of projects that
would bolster the turnover until Java
kicked in. One of these projects was that
of Web hosting – providing an upstream
service for companies. On the face of it,
this wasn’t a bad diversion, but it did
lead us into hosting several adult-ori-
ented Web sites.

The pornography laws here in Britain,
however, aren’t quite as liberal as those in
the U.S. or some European countries.
One of our clients pushed the boundaries
of decency and, after a number of com-
plaints, we decided to move the company
on and have nothing more to do with it.
Three years later, a knock on the door –
the vice squad. Said company has been
charged with a number of obscene publi-
cation violations, and they were tracing
its history. (Fortunately, we have nothing
to do with the actual prosecution and our
company name will be left out of the
whole trial. Right enough, me writing
about it here in JDJ sort of null-’n’-voids
the whole scandal thing! Oops.)

The officers stayed with us awhile and
we took them around the place, showing
them various bits of our company and
our local town. It was the first time I had
the opportunity to talk to guys that were
in this sort of policing. It’s a damn
shame I’m not allowed to retell any of
what they said to me, but whoa! Did they
have bizarre stories to tell, including one
involving a milk-crate, a bottle of
ketchup and a horse! Nuff said, if you get
my drift. But it gave me an idea for a
book I could write that would collate all
these sort of stories. Just need to find a
publisher . . . oh, Fuat!

This month we had a very special
guest stay with us, James Duncan David-
son, head of the Servlet API from Sun.
He was over in Germany doing a confer-
ence and stopped by us for a few days
before heading back to California. It was
good to see him, but in true Alan
Williamson style the visit didn’t run as
smoothly as one would have hoped.

I have a Toyota MR-2. Those of you who
know the Japanese sports car will know it’s
not blessed with the largest of boots –
trunks, to translate for our American read-
ers. James was kind enough to e-mail me
the size of his largest suitcase so I could
determine whether I needed to borrow
somebody else’s car to pick him up at the
airport. A quick runaround with the mea-
suring tape seemed to suggest that the MR-

2 was more than ample for the job at hand.
So I made my way up to Glasgow airport.

Met James off the flight, but only
when we tried to get his suitcase in the
back did we realize that the boot was
way too small. Bugger. Well, that’s okay,
we’ll tie the boot down. But with what? I
had no string, no rope, not even a belt.
Oh, dear. We had a two-hour journey
ahead of us, and there was no way we
could drive with the boot bouncing up
and down. It was at this point James
came up with a blinder of an idea.
Modem cable! We sacrificed a modem
cable and tied the boot down with said
cable, and it never moved a single inch.
Fantastic. Only a pair of geeks could
have come up with that solution.

It still wasn’t plain sailing after that. By
the time I got back to the office a raging
thunderstorm had knocked out the
power and the place was in complete
darkness. Yes, James, we really are in the
middle of nowhere. It’s quite eerie how
quiet a building becomes without the
constant reassuring hum of servers in
the background. I crawled into the
house, found some candles and pro-
ceeded to give James the tour of the
office, in the dark. There was something
quite romantic about it all, but – no
offense to James – I would have preferred
to have been locked down with my other
half, Ceri, in this pitch blackness.

When the power came on a couple of
hours later, we both pounced on our e-
mails like two addicts trying to get our
next electronic fix. Welcome to Scotland,
James!

Thread Update
Several months ago I detailed a prob-

lem we experienced with threads and
the apparent lack of cleanup the virtual
machine had in this field. We discov-
ered that if we didn’t call stop(), the
thread wouldn’t be cleaned up when
the garbage collector ran. When I
announced this, I got a whole flood of
e-mails denouncing me as a charlatan,
or purely a fiction author. This upset

15NOVEMBER 1999

Java COM

KL Group
www.klgroup.com/threads

Java COM

16 NOVEMBER 1999

me more than a little. It has to be said
that many of you still don’t know good
manners when it comes to composing
e-mail. Let me give you a tip: if you
want someone to reply to your e-mail,
or at least read it, be polite. Try it – you
may be surprised.

The major problem I faced was that I
didn’t have a simple test case that I
could use to prove my point. My servlet
environment highlighted it perfectly,
but that was a scenario that couldn’t be
transported easily to another machine.
The mailing list proved to be some com-
fort. Many of you had experienced the
same problem, but in the Swing world.
Again, no test programs were developed
that could demonstrate this.

I was determined to simplify our code
in such a way that we could prove it. I
wanted to show the people who
denounced me that the problem did
indeed exist. Late one night I was sent a
heavenly message from an angel in the
strange form of Oracle. One of the core
engineers found the problem and had a
test program that proved it perfectly
every single time. Hurray! Saved. I tested
the program quickly on a number of
JVMs and, sure enough, the mythical
thread problem is not mythical.

So I can now state publicly that the
thread does indeed exist, there is a test
program, and it has been submitted to

Sun as an official bug. I’ll give you
updates as and when I know more. So
watch this space.

Mailing List
The mailing list is beginning to generate

some seriously good threads of conversa-
tion. In the last month we’ve had a number
of debates on the future of Java and
whether it should be open-sourced or not.
One correspondent posed the question,
and we all answered it. Surprisingly, not
many supported the open sourcing of Java,
which was good. Personally, I had antici-
pated a much greater swing of support, but
it was good to hear everyone’s structured
answers about why it should, for the time
being, be left to Sun to manage.

Discussions on what we’d like to see in
Java in the next wave have also taken place.
One thing that came up time and again
concerned operator overloading. I must
say that I liked this facility in C++, and
understand James Gosling’s apprehension
about not including it in Java. But we hear
that it’s seriously being considered.

If you want to be part of the discussion,
send an e-mail to listserv@listserv.n-
ary.com with subscribe straight_talking-l
in the body of the e-mail. From there
you’ll get instructions on how to partici-
pate on the list. Thank you all for your
continued posts – I thoroughly enjoy the
variety of topics discussed.

Salute of the Month
This month the salute goes to the

team behind Formula1. Some months
ago I moaned about trying to read Excel
spreadsheet files and the hassles we
were going through. Many of you e-
mailed me your stories, but none had
any solutions we could actually use. One
of the core developers of Formula1, Joe
Erickson, read my woes, however, and e-
mailed me detailing his joy in licking the
Excel format. On his advice we looked at
Formula1 – and I have to take my hat off
to those chaps. A fine piece of software.
If you ever need to read and write Excel
files, you won’t find a better solution
than Formula1.

It’s time to finish this up and head into
another month of excitement. Last
month, if you recall, I told you about the
Neil Diamond phase we were going
through. Well, this month we’ve moved
on: I’ve discovered the wonders of Dolly
Parton and, two CDs later, I am well and
truly hooked. The irony of it is that this
column is actually named after a movie
from the selfsame lady. I feel bad that it’s
taken me nearly two years to actually dis-
cover her music. To tell you a wee secret,
as I explore this style of music, I find
myself getting into more and more coun-
try. Scary. Am I turning into my father?

AUTHOR BIO
Alan Williamson is CEO
of n-ary (consulting) Ltd,

the first pure Java
company in the UK. A

Java consulting company
with offices in Scotland,
England and Australia,

they specialize solely in
Java at the server side.

Alan is the author of two
Java Servlet books and

contributed to the Servlet
API. He has a Web site at

www.n-ary.com. alan@sys-con.com

S T R A I G H T T A L K I N G

cyScape
www.cyscape.com/free4j

17NOVEMBER 1999

Java COM

Segue Software
www.segue.com

Java COM

18 NOVEMBER 1999

This fictitious store allows
passengers to lease equipment
for the duration of a flight
Part 1 of this series appeared in JDJ June, Part 2 in JDJ July, Part 3 in JDJ September

This is the fourth in a series of articles focused on using Java and ColdFusion technologies to

develop an Online Ticket Store application.As JDJ’s September issue had an XML focus, we went

with the flow and discussed data formatting aspects of our store and developed XML objects to

pass date structures between the Merchant Server and Service Access tiers.

This month’s article focuses on the online store portion of our application, beginning with a

description of the business offerings of the store.This is followed by a use-case analysis of the store, a

methodology similar to the one in the July issue.We then design the classes for implementing the use

cases and discuss the code needed to make our store a “reality.” We’ll also make use of the XML

objects developed in the September issue to facilitate data transfer for the online store transactions.

J D J F E A T U R E

Leasing and Flying
The Online Airline Store Business Model

In addition to serving as a virtual travel agent, our application has an
online store through which it sells merchandise. This includes the prod-
ucts offered via airline catalogs as well as unique items offered exclu-
sively through the travel agency – books, magazines, clothing, gifts, sou-
venirs and computer equipment, for example.

So far, our store is like any other virtual store on the Internet that also
sells airline tickets. But here’s where it gets interesting. A unique feature
our store offers is the ability for passengers to lease equipment for the
duration of the flight.

This equipment includes:
• Books and magazines
• Laptops for business or pleasure
• Portable CD players and music CDs
• Portable cassette players and audiotapes

The idea is that someone who uses our Online Store to book a flight
and purchase a ticket can instruct the store to have the leased equip-
ment available on the flight he or she will be taking. Although the sce-
nario is fictitious, I’d like to develop it further. I can think of several dif-
ferent options for our leasing operation:
1. The airline could keep an inventory of the equipment at the various

airports and the passenger could pick up and drop off the equipment
at the gate. The equipment may even be directly available on the flight.
This, of course, would put a burden on the airlines to create the infra-
structure and organization to support such a model.

2. The online store could be affiliated with a leasing store at the airport
that holds the inventory. The passenger could pick up the inventory
from the physical store.

3. The online store could have personnel who would be responsible for
making the equipment available at the gate for the flight and picking
it up at the other end of the flight.

If this kind of business becomes a reality, I can foresee airlines (Option
1) and independent agents (Options 2 and 3) competing for the business.
However, one assumption we’ll make for our application is that the
equipment should always be leased via the online store. Thus, similar to
a ticket purchase, payment for leased equipment would be made at the
Merchant Server tier. The modules for this interaction (Shopping Cart,
Catalog, Personal Profile Manager, Payment Manager, etc.) are thus
implemented in ColdFusion and will be discussed in the December issue
of ColdFusion Developer’s Journal. For an explanation of the tiers of this
application and the software modules, please refer to the previous three
articles. Figure 1 shows the four tiers in our application for the current
reference. This is the same as Figure 2 in Part 1 of this series.

WRITTEN BY AJIT SAGAR

PAR
T

4
A N O N L I N E A I R L I N E T I C K E T S T O R E

19NOVEMBER 1999

Java COM

Yo u
may won-

der what modules of
the store will be housed in the

Service Access tier. After all, that’s the Java
middleware tier in this application. Well, though the

merchandise will be ordered and paid for at the Merchant
Server tier, this tier doesn’t have any knowledge of the local

inventory and availability of the merchandise. The Service
Access tier is responsible for this function – and for making

sure that the order, whether it’s a merchandise purchase or
lease, gets “delivered” to the customer. Delivery may constitute

shipping the actual product, making it available at the gate or
keeping it ready for the customer at the physical store in the airport.

The UI design for this application isn’t a major part of our Java-
based design. A sophisticated UI will be developed in parallel using

ColdFusion in the corresponding issues of ColdFusion Developer’s
Journal (Vol. 1, issues 4 and 6, and Vol. 2, issues 1 and 2).

Online Store Requirements
The Online Store entertains two types of transactions – purchase and lease.

Once the customer selects the merchandise (this is handled by the Mer-
chant Server tier), the order is sent to the Service Access tier. This leads
to a check for availability against the Application Services tier. Note that
the function of this tier is different from that in the previous articles. In

this article the tier is responsible for satisfying a merchandise order
instead of booking an airline ticket. In both cases, however, the Application
Service tier acts as the back office for services offered by the middle tiers. If the
purchase or lease were made directly against the airline, the Application Ser-
vices tier modules would reside in the airline’s back offices.

The application modules involved in this transaction are described in
Table 1 and illustrated in Figure 2.

Once the “order” is placed, a confirmation is sent back to the Merchant
Server tier, which is then responsible for getting the payment for the pur-
chase. To keep the workflow simple, we’re assuming a synchronous work-
flow through the system. In reality, part of this workflow will be asyn-
chronous. The simplified workflow for this interaction is shown below:
1. Accept the merchandise order from the Merchant Server tier.
2. Determine whether it’s a PURCHASE or LEASE.
3. In the case of LEASE, search for availability of the merchandise.
4. If not available, send back an exception.
5. If available, place an order with the Application Services tier. For a

PURCHASE operation, this would be an order for a shipment. For a
LEASE operation, this would be the order to make the equipment
available at the airport.

6. Return the confirmation to the Merchant Server tier.

CLIENT

Login Manager

MIDDLE TIER

Catalog

Customer
Profile

Database

Products
Database

Shopping
Cart

Personal
Profile

Manager

Payment
Manager

Order
Manager

To Order
Services

Merchandise
Sales and
Leasing
Broker

FIGURE 2 Online store modules

COMPONENT FUNCTION

Personal Profile Manager Maintains a personalized profile for end customer,
including data about the customer’s flight preferences,
frequency of transactions, history of goods purchased,
etc. The customer may update this.

Catalog Catalog of goods offered by the store, including
merchandise available for purchase as well as lease.

Payment Manager Manages payments made by the customer while
interacting with the system. Consists primarily of
credit card–based payment management.

Customer Profile Database Contains the customer profile, including name,
address, personal preferences, purchase history,
purchasing trends, etc. Information can be used later
to provide CRM (Customer Relationship Management).

Login Manager Manages user login, authentication and passwords.

Shopping Cart Keeps track of customer’s current purchase as well as
pending orders for purchased goods.

Merchandise Sales The main operational module for conducting
and Leasing Broker transactions related to the online sale and leasing of

goods offered in the store. The Broker accepts orders
from the customer, runs them against the Order
Manager and returns a confirmation to the customer.

Products Database Contains information about the products.

Order Manager Interfaces with the back-office modules to check
availability and to place an order. Placing an order
results in creating a shipment (in the case of
PURCHASE) or making the item available at the airport
(in the case of LEASE).

TABLE 1 Description of application modules

Application Services Tier

Merchant Server Tier

Client UI (Browser)
Internet

Internet User

RMI/CORBA TCP

ColdFusion
App Server

Service Access Tier

Java ServletsWeb Server

U

}
Java
Platform
Components}

FIGURE 1 Application framework

Java COM

20 NOVEMBER 1999

This is a simple workflow that runs through the system in sequential
fashion. We’ll implement this workflow in our system, ignoring other
functionality such as canceling an order. The idea is to demonstrate how
data flows through our Online Store from the end customer to the back
office and back. Figure 3 illustrates the use cases for the Broker. Work-
flows are illustrated in Figure 4. The main difference between the two
flows is that the Leasing Order workflow has a constraint on time
because the items need to be booked for the flight and thus need to be
at the airport at a specific time. Note also that the Leasing Order work-
flow follows in sequence from the Ticket Booking workflow described in
the July JDJ article – that is, the items are leased only after the tickets
have been reserved. The Purchase Order workflow is independent of any
interaction the customer may have with the ticket reservation system.
We assume that for a Purchase Order the customer will accept delivery
whenever the merchandise can be sent by the system. This is similar to
the regular catalog orders that state “Allow 4–6 weeks for delivery.”

Data Interchange Formats
The following data objects were introduced in the September JDJ. Some

of the description is repeated here to put things in the appropriate context:
• Lease Order
• Lease Confirmation
• Purchase Order
• Purchase Confirmation

Let’s go ahead and define the attributes of goods sold in the store. An
item that may be offered by the store will have the following fields.
Example values are assigned to the fields:

ITEM_NAME=“CD Player”
ITEM_ID =“cd30056”
QUANTITY=“2”

An order for the purchase of an item (or items) will also need infor-
mation about the person making the purchase. This will consist of the
following fields:

NAME=“Clark Kent”
ADDRESS=“123 Tiny Lane, Smallville, Kansas, 12345”

The fields listed above are common for both purchase and lease
options. The lease operation requires one additional field. This is the ref-
erence number of the confirmed flight, and is required because it’s the
reference for the store to make the equipment available at the airport.

REFERENCE_NO=“SA123456”

The hierarchy of the XML documents in DOM for the PURCHASE/lease
was illustrated in the September JDJ. The XML files are shown in Listing 1.
I won’t go into a detailed description of the code for the XML parsing for
these objects as it’s similar to the mechanism described for the ticket
reservation part of our application as shown in September.

Class Design
Now let’s define the classes involved in this set of transactions. For

now, we’ll forgo discussion on the UI and assume that the user’s input
somehow arrives at the Broker. In designing the store I’m restricting the
discussion to an RMI-based connection to the back office. The previous
articles have discussed the flexibility of using different transport proto-
cols like CORBA, TCP/IP, etc. That design can easily be applied to our
store. The classes for the store are described in the following sections.
Figure 5 illustrates the class relationships.

StoreServlet
Listing 1 shows the StoreServlet class. This class receives a merchan-

dise order request (“PURCHASE” or “LEASE”) from the Merchant Server,
packages it into a LeaseOrder (LEASE) or PurchaseOrder (PURCHASE)
object, passes it on to the Order Manager and gets a confirmation (or an
exception if it’s a LEASE operation), and returns the result to the Mer-
chant Server. The input to the servlet is in the form of an HTTP POST that
carries one of the following XML data structures:

<LEASE>
<PURCHASE>

The LEASE structure is used only after the customer has purchased a
ticket. The StoreServlet first checks to see whether it has a reference to the
clientManager_ object. If not, it constructs a new StoreClientManager
object. The request and response streams are copied into request_ and
response_ variables for future use. Next, the method processParameters() is
called. This method parses the input parameters and creates the appropri-
ate Java object. The XML processing for this application is done in the XML-
Processor class. The methods for the LEASE and PURCHASE operations are
shown in Listing 1. (The code for the ticket reservation objects is stubbed

MERCHANDISE SALES
AND LEASING BROKER

User places order for buying merchandise

User places order for leasing merchandise

USE CASE 1

USE
CASE 2

FIGURE 3 Use cases for the merchandise sales broker

Purchase Order

User

Flight Information

Broker

Back
Office

Leasing Order

Get
confirmation

Place
order

Return
confirmation

Return
confirmation

Create
purchase order

Submit order
for merchandise

Get
result

Return
confirmation

Return
exception

Check
availability

Return
confirmation

Item
available?

Yes

No

Book item
for flight

Create
Leasing
Order

Submit
order for

merchandise

Return
exception

FIGURE 4 Workflows for the broker

XML Processor

TicketQuote

Item

<<interface>>
TicketService

StoreClientManager

RMIStoreClient

StoreServlet

LeaseOrder

PurchaseOrder

RMIStoreServer

FIGURE 5 Online store classes

21NOVEMBER 1999

Java COM

Applied Reasoning
www.appliedreasoning.com

out to conserve space.) The StoreServlet first cre-
ates a new instance of the XMLProcessor object.
The complete listing may be obtained from
www.JavaDevelopersJournal.com. It then calls
the initParser() method on the XMLProcessor
class. The servlet’s input stream is passed in as a
parameter for parsing the XML document that
the servlet received in its input stream. The XML-
Processor class is shown in Listing 2. The code
for XMLParser.java is not discussed here, as it’s
similar to the code in the September article.

Next, the method getOperationType() is
called on the XMLProcessor reference (xp) to
check what kind of an operation was invoked
on the StoreServlet. If the type is a “Purchase,”
the method processPurchase() is called on the
object xp. This method returns a Purchase-
Order object from the XML document. This
object is passed to the doPurchase() method,
which in turn calls the doPurchase() method
on the clientManager_. If the type is “Lease,”
the method processLease() is called on the
object xp. Following this, the local method
doLease() is called, which in turn calls the
method doLease() on the clientManager_.

This is a very simplified version of an order.
A real order would have greater detail, includ-
ing telephone number and method of ship-
ment.

XMLProcessor
The following methods were added to this

class as compared to the September listing:

processPurchase()
processLease()
processConfirmation()

The complete code for these methods is given
in Listing 2. The remainder of the listing was
provided in September and thus is not repeated
here. One new operation used in the parsing is
the processListTag() utility method, which is
used to obtain an array of item objects from the
XML input file (submitted via the POST). This is
used in both processLease() and processPur-
chase() methods. The processConfirmation()
method is relatively simple in comparison to the
processTicketQuote() method described in Sep-
tember. The complete listing for this file is avail-
able at www.JavaDevelopersJournal.com.

The next four classes – Item, PurchaseOrder,
LeaseOrder and Confirmation – are shown in
Listing 3.

Item
This class encapsulates an item. Basically, it

consists of the following data fields and the get-
ter and setter methods for them:
• name • sku • quantity

PurchaseOrder
This class encapsulates an item purchase

order. It consists of the following fields and the
corresponding getter and setter methods:
• list of Items • customerName • address

LeaseOrder
This class encapsulates an item leasing

order. It consists of the following fields and the
corresponding getter and setter methods:
• list of Items • customerName
• address • referenceNo

The LeaseOrder class inherits its first three
fields from PurchaseOrder. The last field is the
reference number of the associated tickets pur-
chased.

Confirmation
This class encapsulates the result of an order

for a purchase or a lease. It consists of the fol-
lowing fields and the corresponding getter and
setter methods:
• status (confirm/reject)
• reference number

The last four classes – StoreClientManager,
RMIStoreService, RMIStoreClient and RMI-
StoreServer – are shown in Listing 4.

StoreClientManager
This class receives a PurchaseOrder or a

LeaseOrder from the StoreServlet, forwards it to
the RMIStoreClient, gets back a Confirmation
object and sends it back to the StoreServlet. It’s
also responsible for actually placing the order
or arranging for the lease. This functionality is
stubbed out in the application. It has two main
methods – doPurchase() and doLease(). The
doLease() method delegates the operation to
the RMIStoreClient’s doLease() method.

RMIStoreService
This is the interface for the services offered

by the Application Services tier. It provides a
single method, getLeaseAvailability().

RMIStoreClient
This is accessed by the StoreServlet for sub-

mitting the request to a Ticket Server. It pro-
vides the stub for the method getLeaseAvail-
ability().

RMIStoreServer
This class processes a PurchaseOrder (or

LeaseOrder) object and sends back a Confir-
mation object. It implements the method
getLeaseAvailability(). The code always returns
a “true” for availability. In a real application this
would go against a local availability engine that
would check whether the item was available in
the store.

Running the Programs
The StoreServlet can be accessed via any

client that can post the corresponding file for
either the LEASE or the PURCHASE operation.
I’ve included the files required to access the
servlet from ColdFusion. Readers may use
HTML, Java clients or VB clients. The code for
this article is available at www.JavaDevelopers-
Journal.com. The code was compiled and test-
ed on a Windows NT 4.0 workstation. To run
the programs you’ll need the following:
• JDK 1.1.x
• JSDK 2.0 (Java Servlet Development Kit)
• Your servlet engine and Web server

Conclusion
Developing this application has been a fun

task for me. My intention was to provide a
template for building n-tier applications in e-
commerce. In essence, the idea was to decou-
ple the Web storefront from the back-office
services. If you undertake the development of
such applications, the business logic for
accessing back-office services may reside in
middleware components written in EJB or
COM. In that case you may end up using two
categories of application servers – the Web
storefront application server like ColdFusion
and a middleware application server such as
Netscape Application Server or WebLogic’s
application server.

As mentioned earlier, this article series has
generated a lot of feedback from readers – so
much so that I plan to include the concepts
discussed here in a book I’m currently writing.
I hope it’s been a useful exercise for all of you
too.

AUTHOR BIO
Ajit Sagar, a member of the technical staff at i2 Technologies in
Dallas,Texas, focuses on Web-based e-commerce applications and
architectures. Ajit is a Sun-certified Java programmer with nine years
of programming experience, including two and a half in Java. He
holds an MS in computer science and a BS in electrical engineering.

Java COM

22 NOVEMBER 1999

ASIDE FROM THE AUTHOR
I’d like to bring up a few interesting issues related to this article series. For one thing, the first article generated

more feedback than I expected. It’s been a pleasant surprise to know that some companies actually have airline
store sites developed in ColdFusion similar to the fictitious one we’ve developed here. I also received some e-mail
that indicated folks took this application more seriously than I thought they would. These readers concluded that
this is a real-world application. While the design of the application outlines a real-world architecture for a business
problem and serves as a template for a real-world solution, it’s not a production-level system.

Another interesting development was that LiveSoftware (the makers of JRun) was acquired by Allaire Corporation
(the makers of ColdFusion). This happened during the week of June 14, when JavaOne was in progress. It was my
pleasure to talk to Jeremy Allaire (ColdFusion) and Paul Colton (JRun) at JavaOne regarding this development. In my
opinion this has been a very smart move on Allaire’s part. A few months ago Allaire acquired Bright Tiger Technologies,
a company that specializes in clustering technology. The acquisition of JRun makes Allaire’s app server story complete.
ColdFusion is a great product and I’ve always felt they needed a story on the Java side. That was part of the motivation
for building the Online Ticket Store. Coincidentally, the August issue of ColdFusion (Vol. 1, issue 4) has two features with
two individual CF_SERVLET tags – the professional one from LiveSoftware and my own humble contribution. ajit@sys-con.com

Elixir Technology
www.elixirtech.com

23NOVEMBER 1999

Java COM

Java COM

24 NOVEMBER 1999

import java.io.*;
import java.util.*;
import java.text.*;
import java.rmi.*;
import javax.servlet.http.*;
import javax.servlet.*;

public class StoreServlet extends
HttpServlet
{

protected HttpServletRequest request_
= null;
protected HttpServletResponse
response_ = null;
protected StringBuffer result_ = null;

XMLProcessor xp_ = null;
PrintWriter toClient_ = null;
StoreClientManager clientManager_ =
null;
Confirmation confirmation_ = null;

// handle POST for servlet
public void doPost (HttpServletRequest
request,

HttpServletResponse response)
throws ServletException, IOException {

request_ = request;
response_ = response;

toClient_ = new
PrintWriter(response_.getOutputStream());

// Begin HTML
toClient_.println("<HTML>");

if (clientManager_ == null) {
clientManager_ = new StoreClientManag-
er(); }

result_ = new StringBuffer();

// Extract the arguments into local
// variables
processParameters();
toClient_.println(result_.toString());

toClient_.println("<HTML>");
toClient_.flush(); }

private void processParameters () {
//XMLProcessor for converting XML
//to Java
xp_ = new XMLProcessor();

try {
InputStream in = request_.get
InputStream();
xp_.initParser(request_.getInput
Stream(), toClient_); }

catch (IOException ioe) {
ioe.printStackTrace(); }

LeaseOrder leaseOrder = null;
PurchaseOrder purchaseOrder = null;

String queryType = xp_.getQuery-
Type();

if (queryType.equals("Lease")) {
leaseOrder = xp_.processLease();
confirmation_ = doLease(lease-
Order); }

else if (queryType.equals("Pur-
chase")) {

purchaseOrder = xp_.processPur-
chase();
confirmation_ = doPurchase(pur-
chaseOrder); }

else {
result_.append("<HI>ERROR:: Unknown
query type");

return; }

String xmlConfirmation =
xp_.processConfirmation(confirmation_);

result_.append(xmlConfirmation);
}

private Confirmation doLease(Lease-
Order leaseOrder) {

try { return
clientManager_.doLease(leaseOrder); }
catch (Exception e) { return null; }
}

private Confirmation doPurchase(Pur-
chaseOrder purchaseOrder) {

try { return clientManager_.doPur-
chase(purchaseOrder); }
catch (Exception e) { return null; }
}

<!-- Confirm.txt -->

<?xml version="1.0"?>
<Confirmation Type="Ticket">

<ConfirmationNo>"SA2345678"</Confirma-
tionNo>

</Confirmation>

<!-- Lease.txt>

<?xml version="1.0"?>
<Lease>

<Passenger>
<Name>

<LastName>"Kent"</LastName>
<FirstName>"Clark"</FirstName>

</Name>
</Passenger>
<Flight>
<ReferenceNo>"SA123456"</ReferenceNo>
</Flight>
<ItemList>

<Item>
<ItemName>"CD Player"</ItemName>
<ItemId>cd00321</ItemId>
<Quantity>1</Quantity>

</Item>
<Item>
<ItemName>"Book"</ItemName>
<ItemId>bookx453</ItemId>
<Quantity>1</Quantity>

</Item>
</ItemList>

</Lease>

<!-- Purchase.txt>

<?xml version="1.0"?>
<Purchase>
<Passenger>
<Name>

<LastName>"Kent"</LastName>
<FirstName>"Clark"</FirstName>

</Name>
<Address>

<Street>"123 Tiny Lane"</Street>
<City>"Smallville"</City>
<State>"Kansas"</State>
<Country>USA</Country>
<ZIP>12345</ZIP>

</Address>
</Passenger>

<ItemList>
<Item>
<ItemName>"CD Player"</ItemName>

<ItemId>cd00321</ItemId>
<Quantity>1</Quantity>

</Item>
<Item>

<ItemName>"Book"</ItemName>
<ItemId>bookx453</ItemId>
<Quantity>1</Quantity>

</Item>
</ItemList>

</Purchase>

}

import java.io.*;

public class Item implements Serializable {

private String name_ = null;
private String sku_ = null;
private int quantity_ = 0;

public Item (String name, String sku,
int quantity) {
name_ = name;
sku_ = sku;
quantity_ = quantity; }

public String getName () { return
name_; }
public String getSKU () { return sku_;
}
public int getQuantity () { return
quantity_; }

}

// PurchaseOrder.java
import java.io.*;

public class PurchaseOrder implements
Serializable {
private Item[] items_ = null;
private String customerName_ = null;
private String address_ = null;

public PurchaseOrder (Item[] items,
String customerName,
String address) {

items_ = items;
customerName_ = customerName;
address_ = address;

}
public Item[] getItems () { return
items_; }
public Item getItem(int index) { return
items_[index]; }
public String getCustomerName () {
return customerName_; }
public String getAddress () { return
address_; }

}

// LeaseOrder.java
import java.io.*;

public class LeaseOrder extends Pur-
chaseOrder implements Serializable {

private String referenceNo_ = null;

public LeaseOrder (Item[] items,
String customerName,
String address,
String referenceNo) {

super(items, customerName, address);
referenceNo_ = referenceNo;

}
public String getReferenceNo () {
return referenceNo_; }
}

// Confirmation.java
public class Confirmation {
String type_ = null;
String confirmationNo_ = null;

public Confirmation (String type,
String confirmationNo) {
type_ = type;
confirmationNo_ = confirmationNo;

}

public String getType () { return
type_; }
public String getConfirmationNo () {
return confirmationNo_; }

}

Listing 3: Item.java, PurchaseOrder.java,
LeaseOrder.java, Confirmation.java

Listing 2: .java: XML processor for the Online
Store

Listing 1: StoreServlet.java

25NOVEMBER 1999

Java COM

VSI Comp Inc.
www.visicomp.com

Instantiations
www.instantiations.com

Java COM

26 NOVEMBER 1999

public class StoreClientManager {

RMIStoreClient rmiClient_ = null;

public StoreClientManager () {
if (rmiClient_ == null)

rmiClient_ = new RMIStore-
Client();
}

public Confirmation doLease (LeaseOrder
leaseOrder)

throws Exception {
Boolean result =

rmiClient_.getLeaseAvailibility(lease-
Order);

if (result.booleanValue())
return new Confirmation("Lease",
"AS1234");

else
return new Confirmation("Lease",

"NIL");
}

public Confirmation doPurchase (Pur-
chaseOrder purchaseOrder)

throws Exception {
return new Confirmation("Purchase",

"AS1234");
}
}

// RMIStoreService.java
import java.rmi.*;

public interface RMIStoreService extends
Remote {

public static final String
SERVER_NAME =

"rmi://t8000x321/servlet/rmiStoreServer";
public Boolean getLeaseAvailibility

(LeaseOrder leaseOrder) throws
RemoteException;
}

// RMIStoreClient.java
import java.rmi.*;

public class RMIStoreClient implements
RMIStoreService {

private RMIStoreService server_ =
null;

public RMIStoreClient() { connect
ToServer(); }

public Boolean getLeaseAvailibility
(LeaseOrder leaseOrder) throws
RemoteException {
Boolean result = new Boolean(false);
try { result = server_.getLeaseAvaili-
bility(leaseOrder); }
catch (Exception re) { re.printStack-
Trace(); }

System.out.println("result = " +
result);

return result;
}

public void connectToServer () {
if (System.getSecurityManager() ==
null)

System.setSecurityManager(new RMISe-
curityManager());

try { server_ =
(RMIStoreService)(Naming.lookup(RMIS-
toreService.SERVER_NAME)); }
catch (Exception e) { e.printStack
Trace(); }
}

}

// RMIStoreServer.java
import java.rmi.server.*;

public class RMIStoreServer
extends UnicastRemoteObject implements
RMIStoreService {

public String RMI_SERVER_NAME =
"rmi://t8000x321/servlet/rmiStoreServer";

public RMIStoreServer() throws Remote-
Exception {
super();
}

public Boolean getLeaseAvailibility
(LeaseOrder leaseOrder) throws
RemoteException {
return new Boolean(true);

}

public static void main (String[] args) {
System.setSecurityManager(new RMISecu-
rityManager());
try {

RMIStoreServer server = new RMIS-
toreServer();

Naming.rebind(server.RMI_SERVER_NAME,
server);
System.out.println("RMIStoreServer
ready ..."); }

catch (Exception e) { e.printStack-
Trace(); }
}

}

Listing 4: StoreClientManager.java,
RMIStoreService.java, RMIStoreClient.java,
RMIStoreServer.java

27NOVEMBER 1999

Java COM

Pointbase
www.pointbase.com/devlic/jdj

This article will describe the technical
considerations that enable an applica-
tion or system to run on a broad range of
platforms. Minimizing the memory foot-
print to suit a range of environments,
from network servers to PDAs and other
devices, is the core of this issue. Applica-
tions that require a minimum memory
footprint will benefit from two impor-
tant factors: (1) the JVM (Java Virtual
Machine) class loader and (2) a develop-
ment strategy for building applications
or systems using Java “factories.”

How to Build Dynamic Footprint Applications and Systems
The JVM class loader has the ability to

load and unload from memory the sub-

set of class files needed at any given time
by the application or system (see Figure
1). By contrast, Algol-based applica-
tions, including those written in C or
C++, require the entire executable to be
brought into memory in order for any
part of the application or system to exe-
cute, even if only a subset of the func-
tionality is required at runtime (see Fig-
ure 2). This is an important and signifi-
cant difference that can dramatically
impact the runtime memory footprint.

To achieve the greatest possible bene-
fit from the JVM class loader, PointBase
has employed Java “factories” in the
design and architecture of its database
management system. Using factories
allows developers to minimize class file
size (and disk requirements) by including
only those factories needed by the appli-
cation. More significant, a disciplined
implementation of factories in the data-
base ensures a minimum memory foot-
print – the JVM class loader keeps in
memory only those classes needed at any
one time by the application.

Using the discipline of factories and
the JVM class loader allows you to create
dynamic footprint applications and sys-
tems that won’t require special tailoring
by an end user to meet limited memory
requirements, especially for memory-
constrained devices and systems such
as PDAs.

Code Snippets
The following code snippets provide a

simple example of the method that
PointBase has used to create Java facto-
ries. This particular section of code
demonstrates the compilation factory
for a SQL Create Table statement.

public class createTableCompilation-
Factory
{
public compilerInterface getCompiler(
)
{
return new createTableCompiler();
}

public definerInterface getDefiner()
{
return new createTableDefiner();
}

public compilerInterface getExecu-
tion()
{
return new createTableExecution();
}

public parserInterface getParser()
{
return new createTableParser();
}
}

The methods in this class are invoked
when an SQL Create Table statement is
executed in the application.

With most SQL statements a database
management system needs to parse the
statement, check definition information
in the system catalogs and then compile
it into an internal format for execution.
With PointBase, when an SQL statement
is encountered the appropriate factory
will be used to invoke constructors that
cause the parsing, definition, compila-
tion and execution aspects of an SQL
statement. This approach allows you to
separate unassociated functionality, and
dynamically limit or add functionality
without causing linking problems com-
monly encountered with other develop-
ment languages.

Benefits of Maintaining Applications Written Using
Java Factories

Algol-based applications and systems
don’t have the ability to dynamically
load objects. The entire executable must
be loaded into memory in order for even
one object to execute. Additionally, most
Algol-based languages don’t support or
allow the factory concept.

Many developers may attempt to
circumvent the restrictions of Algol-
based applications by recompiling the
application for each environment
with only those features that they

Minimizing the memory footprint to suit a range of environments

WRITTEN BY
JEFF RICHEY AND

JEFF SCROGGIN T
oday developers are creating a full spectrum of Internet applications and systems
ranging from enterprise servers to handheld devices that manifest a number of
unique requirements. Although these applications and systems are commonly
written in Java, they have different footprint requirements depending on the plat-
form they run on. However, they need to have the same look and feel regardless of
where they’re deployed.

J A V A M E M O R Y M A N A G E M E N T

UnlSync

Security

UnlSync

Security

Multi
User

Multi
User

Objects

Create
Tables

Transactions

Update
Data

Read
Only

DISK MEMORY

FIGURE 1 The Java Virtual Machine loads into memory
only that subset of class files needed by the application
at runtime.

UnlSync

Security

Multi
User

Objects

Create
Tables

Transactions

Update
Data

Read
Only

UnlSync

Security

Multi
User

Objects

Create
Tables

Transactions

Update
Data

Read
Only

DISK MEMORY

FIGURE 2 Algol-based environments such as C and
C++ load an entire application into memory, even if
only a subset of the functionality is required at runtime.

How Not to Trip Over Your Own Footprint!

Java COM

28 NOVEMBER 1999

29NOVEMBER 1999

Java COM

American
Cybernetics

www.softexport.com

Java COM

30 NOVEMBER 1999

need. For example, some C-based
database systems require the user to
go through numerous steps with their
application and database in order to
generate a reduced runtime footprint
(see Figure 3).

This methodology has a significant
limitation when the application needs
to be modified as these steps must be
repeated and the application rede-
ployed to all installations. This approach
is extremely expensive and labor inten-
sive for the application developer and
the end user who must redeploy the
application.

However, Java dynamically adapts to
the applications and systems without
end-user intervention. Algol-based
products require end users to adapt
their applications and systems. This dif-

ference is fundamental and crucial to
deploying and managing small footprint
applications in the field.

PointBase and Dynamic Footprint
PointBase delivers an object-relation-

al database management system written
in 100% Pure Java. Developers who wish
to embed the PointBase database sys-
tem within their application typically
include the classes from the PointBase
JAR file in their own application’s JAR
file. The developer can then control and
monitor the runtime memory and disk
footprint of the entire solution, includ-
ing the database (see Figure 4).

For customers who don’t need the full
range of database functionality, Point-
Base’s Java factory architecture provides
a simple, automated way to customize
the database for each application. For
example, many applications don’t need
SQL security (privileges). Others, such
as “palm” applications, only need SQL
DML (Delete, Insert, Update), SQL
Queries (Select) and Transaction man-
agement (Commit and Rollback) func-
tionality. PointBase supports a wide
range of application requirements and
will dynamically minimize the footprint
for a full range of applications and envi-
ronments.

ApplicationSpecific
FeatureSet

AnalysisProcess

Compile Process

Link Process

Reference
Code

Application
Code

Preprocessed
Code

Customized
Application

Platform Specific
Components

FIGURE 3 In order to minimize memo-
ry footprint in Algol-based environments,
developers must commonly follow a com-
plex series of steps to create a cus-
tomized version of the application con-
taining only the necessary functionality.

Routines UnlSync

ObjectsTransactions Security

Multi
User

Create
Tables

PointBase Kernal

Modify
Data

Read
Only

S
m

a
ll
e
s
t Footprint

L
a

rg
e
s
t Footprint

FIGURE 4 PointBase’s Java factory
design implements SQL functionality as
distinct class files or modules that the
JVM class loader invokes automatically at
runtime, providing the minimum data-
base footprint for each application and
installation.

jeff.scroggin@pointbase.com jeff.richey@pointbase.com

Slangsoft
www.slangsoft.com

AUTHOR BIO
Jeff Richey, vice president

of engineering and
cofounder of PointBase, is

a recognized leader in
database product

development. Jeff has
over 15 years of

database experience,
working as a core

architect and
development manager for
IBM/DB2, HP, Oracle and

Sybase. He is a patent
holder of two key

innovations in SQL
performance,

Jeff Scroggin, director of
marketing at PointBase, is
an experienced marketing

manager with over 10
years working in the data

management and
applications market

segments. His
assignments have
included product

marketing, product
management and

business development
responsibilities.

J A V A M E M O R Y M A N A G E M E N T

Unify Corporation
www.ewavecommerce.com

31NOVEMBER 1999

Java COM

This column discusses property editors and how to imple-
ment one for Java – specifically, how to make one work for our
CodeDocument class. When last we talked, we saw how to
build a CodeDocument class, but it wasn’t something we could
work with in a visual designer like JBuilder, say, or Visual Café.
In this column we’ll build a special case of the JTextArea com-
ponent and add some specialty properties and property edi-
tors to support the CodeDocument class we worked on before.
The code listings at the end of the article are excerpted from
the complete code, which you can download from
www.JavaDevelopersJournal.com.

Property Editors and How They Work
Basically, property editors allow you to edit a property. Wow!

What a concept! Except that to make this work the IDE has to
know what the property is. Luckily, since we’re talking about
Java, we have a neat little tool called Reflection that we can use
to ask any given object, “What are you?” and get back a
response like, “I’m a java.lang.String class object.” Great, now
we know what we’re dealing with…but wait a minute…hold
the bus. How do we know how to edit the object? “It’s a string.
How hard can it be?” you say. Well, if everything were a string,
we’d have no problems, but things are a little more complicat-
ed than that. Granted, a string is easy to edit, but what about a
color object, or a collection of items (like a vector)? Since a
property can be any kind of object, we need to have a uniform
way of explaining to the IDE how to edit that object, and, if
necessary, supply a custom UI with which to edit the property.
So the property editor interface provides just the thing we
need, with methods to get and set the object in question, as
well as methods for telling whether the property editor sup-
ports a custom UI editor.

Property editors by themselves don’t do much good. For the
IDE to “know” about them, the component whose properties
we’re interested in must publish BeanInfo. The BeanInfo inter-
face describes the component to the IDE with information
such as the icon to display as a visual representation of the
component and – you guessed it – a list of property descrip-
tors. What do the property descriptors do? They describe prop-
erties! Each property descriptor contains information such as
the name of the get and set methods, the name of the proper-
ty, the class the property belongs to and, finally (and this is
optional), the PropertyEditor class itself. Thus, when the user
asks to edit a property, the IDE first retrieves the component’s
BeanInfo class and then the property descriptor for the
desired property. If the property descriptor supports a custom
editor, the custom editor is then loaded and the custom editor
component is loaded and displayed for the user to work with
(this usually takes place in a dialog of some sort – at least this
is how JBuilder handles things).

Adding Our Own Property Editor for the CodeDocument
Let’s take this knowledge and do something practical with it.

Let’s add a new component based on JTextPane, which auto-
matically uses a Document model based on our CodeDocu-
ment class. We’ll start with the code shown in Listing 1.

All right, that was pretty painless. What we’re doing is calling
the super class in the constructor and setting the document to

a new instance of
the CodeDocument
class we developed
previously. We’re go-
ing to add a single
property – call key-
words – that will allow
the developer to modify
the CodeDocument keywords
attribute. Doing this changes the set of keywords the Code-
Document looks for in its syntax highlighting process. Let’s
look at another example demonstrating this, in Listing 2.

So now we’ve added two methods that allow us to get and
set keywords. We overloaded the setKeywords method to allow
for either a vector of keywords or an array of strings (the array
of string method simply converts the array to a vector and calls
the vector version of the method). This will become more
important when we add our property editor later on. Notice
that we didn’t add an attribute of type Vector to the code –
we’re simply mapping any calls to get or set keywords directly
back to the CodeDocument class. Now we have our compo-
nent, and if we wanted to we could leave it at that. However,
we wouldn’t have a property editor working yet, thus defeating
the point of this article!

The next thing we need to add is the BeanInfo class. Bean-
Info is actually an interface that you need to implement in
some other class to make things work. So let’s create our Bean-
Info implementation class, as seen in Listing 3.

So far this is pretty basic. As mentioned before, the BeanIn-
fo methods allow an IDE to determine all sorts of information
about the component and the properties it supports. In our
implementation you’ll notice we extend SimpleBeanInfo, a
class that has all the methods of the BeanInfo stubbed out.
Since there are a few other methods that aren’t neccessary for
us at this point, extending SimpleBeanInfo makes our life a lit-
tle easier, allowing us to focus on just the parts we need. As
mentioned earlier, getPropertyDescriptors() is the method
called by the IDE to get all the property info. We’ll return an
array of property descriptors only for the properties we’re
interested in exposing to the IDE for user manipulation. In our
case there will be only one element, for the keywords proper-
ty. The getIcon() method will return either null or an image
containing a 16x16 icon (black and white or color) that repre-
sents the component or a 32x32 icon (also black and white or
color). The kind of icon is determined by the iconKind para-
meter passed into the method (the choices are
ICON_COLOR_16x16, ICON_COLOR_32x32, ICON_MONO_16x16,
and ICON_MONO_32x32). The getAdditionalBeanInfo() is
supposed to call the super class and request more bean info
from that class.

For now, let’s look at the getPropertyDescriptors() method.
In our implementation we need to supply only one element in
the array. We don’t need to worry about any of the super class
properties. If we had another property that was a string – say,
DocumentName – we wouldn’t have to worry about it either.
Why? Because objects like string and integer almost always
have default property editors registered in the IDE and there’s
usually no need to register something else. But let’s say that,

Components, and Creating a Custom Property Editor

WRITTEN BY
JIM CRAFTON

Java COM

32 OCTOBER 1999

Adding more features to the CodeDocument class

33NOVEMBER 1999

Java COM

Fiorono Software
www.fiorano.com

Java COM

34 OCTOBER 1999

instead of DocumentName, our property was called FileName,
and we wanted to bring up some kind of file open dialog when
the user tried to edit it. Now we’d want to supply a custom
property editor for the string, causing a file open dialog to pop
up when the property is edited. Back to our implementation.
To set up the element properly, let’s look at Listing 4.

The first thing we do is create a new instance of a Property-
Descriptor class by passing in the name of the property, the
class it belongs to (in our case CodeTextPane) and the names
of the get and set methods. The setDisplayName() method is
used to define the text that will be displayed for your property,
and the setShortDescription is used to populate tool tips with
a short description of your property. The setPropertyEditor-
Class() method is used to set the class type for your property
editor. It’s important to set this up correctly; otherwise the
property editor won’t be picked up by the IDE. The class Key-
wordsEditor is the one we’re going to create next, in case you’re
wondering where it came from. After this is done we’ll create a
new array of PropertyDescriptor objects (the propertyDescrip-
tors variable) and put the new instance we created previously
into the array. Then we just return the array.

The only other method we’ll bother implementing in our
implementation of BeanInfo is the getAdditionalBeanInfo()
method. This is given in Listing 5.

By providing additional BeanInfo, we’re giving the IDE more
information about our object – specifically, about the object’s
super class. Similar to the PropertyDescriptor, we’re returning
an array of objects, each a reference to BeanInfo. In our imple-
mentation we call the Introspector’s getBeanInfo() method to
get the super class’s bean info.

So far we’ve gone through all the steps neccessary to create
a simple component (CodeTextPane) and supply an imple-
mentation of BeanInfo that properly exposes our property
(keywords) and its custom editor class (KeywordsEditor). Now
it’s time to look at the property editor class directly. The class
will actually have two parts: the first is the property editor class
itself, KeywordsEditor (Listing 6a); the second is the custom
editor component, KeywordsEditorComponent (Listing 6b).

The property editor interface is fairly easy to implement,
especially when we extend from the PropertyEditorSupport
class. Like the SimpleBeanInfo, it provides either stubs or sim-
ple implementations of the methods so we can concentrate on
the few that are important to us. Since we want to support a
custom editor component, we return true from the supports-
CustomEditor() method that’s called by the IDE. We also
return an instance of our editor component in the getCus-
tomEditor() method. Since getCustomEditor() returns a com-
ponent, we can base our editor component on practically any-
thing. Usually the component gets nested into some other
container, like a dialog (this is the case with JBuilder), so bas-
ing it on JPanel is usually a good idea. The getJavaInitializa-
tionString() method returns a string that represents the Java
code required to set the given property from the code editor.
Whenever you change the property via your custom editor,
this string will need to change as well. An example would be a
property that is a font object. In your IDE’s code editor, you
might see something like this:

public void myInitMethod(){
//more code
this.setFont(new Font("SansSerif", 1, 12));
//more code...

}

The line “new Font(“SansSerif”, 1, 12)” would be provided to
the IDE by whatever property editor is registered for the font
property of the object. This string would be the return of the

property editor’s getJavaInitializationString() method. In our
case the string might look like the following:

public void myInitMethod(){
//more code
codeTextPaneObj.setKeywords(new

String[]{"foo","bar","blah",});
//more code...

}

Since there’s no convenient way to represent a vector like
this, we can use our second version of the setKeywords()
method to pass in the new set of keywords. The implementa-
tion code for the getJavaInitializationString() method would
look like Listing 7.

The getValue() method returns the current value of the
property represented by the property editor (it’s already
implemented for us by the PropertyEditorSupport class). We
then go through all the elements in the vector and assemble
them into a string, returning this string when we’re finished.

With this done we have our PropertyEditor class ready to go.
Now we can take a look at designing the custom editor com-
ponent. For starters let’s take a look again at Listing 6b. The
class is simple. It extends Panel (or JPanel if you want to have
a Swing look) and has a constructor that takes one argument –
a property editor object that’s set to a private variable. As it
stands, the component will do absolutely nothing, so let’s add
a listbox to view all our keywords, an edit box to type in new
keywords, two labels – one for the list and one for the edit box
– and, finally, two buttons – one to add the information in the
edit box and one to delete selected items from the keywords
list. Take a look at Listing 8.

The keywords variable is a DefaultListModel, Swing’s
default implementation of a suitable list model for use in JList
controls. So when we add items to the list, we don’t bother call-
ing the control methods; instead, we actually manipulate the
keywords object. The JList is constructed by passing in the
keywords object as its model, so everything is hooked up for
us. The next thing we need to add is a private initialization
method to set all the widget properties and hook up event lis-
teners, as well as to configure a GridBagLayout to position all
the controls properly. We’ll call this method initEditor(), and
instead of showing all the code here (you can see it on the JDJ
Web site), I’m just going to present the sections relevant to the
article. The main thing we need to catch are changes to the
keywords list. Each time it changes, we need to call the prop-
erty editor’s setValue() method to inform it of a change, which
in turn notifies any registered listeners that the property has
changed. That way, when our editor component is dismissed,
the property is in a valid state and the getJavaInitialization-
String() will return correct data. To accomplish this we register
a listener with the keywords object as seen in Listing 9 (this
takes place in the initEditor() method).

This ensures that any change to the keywords object will call
the keywords_changed() method (a private method of the edi-
tor component), which properly updates the property editor.
According to the Java documentation, you shouldn’t actually
modify the property editor value directly; instead, you should
just send a new instance. To do that we end up with the code
in Listing 10.

The method simply makes a copy of the elements in the
keywords list and places them in a new instance of a vector
that can then be sent to the property editor via the setValue()
method.

One other thing of interest in the initEditor() method is the
setting of the listbox to the current value of the property edi-
tor. This is accomplished in Listing 11.

35OCTOBER 1999

Java COM

Metamata Inc.
www.metamata.com

Java COM

36 NOVEMBER 1999

The keywords object is cleared using the removeAll()
method, and the property editor’s value is retrieved through
the getValue() method and then enumerated; the new ele-
ments are then added to the keywords list.

That’s It, Folks!
We’re done!

• We’ve covered creating a new text component with support
for our previously created CodeDocument class.

• We’ve created a BeanInfo class to ensure that IDEs such as
JBuilder are aware of the properties we’re exposing and any
custom features, like editors, we support.

• We’ve created a property editor class to support our new property.

• We’ve created a custom editor component that will allow us
to edit that property in a visual way.

Whew! I hope this was helpful – let me know how it works
for you by e-mailing me at ddiego@diegoware.com.

AUTHOR BIO
Jim Crafton is part of the R&D team at Improv Technologies (www.improv-tech.com), helping
to develop a new production-quality animation tool. In his spare time he develops advanced
graphics software (you can see it at www.diegoware.com).

package CodeEditor;

import com.sun.java.swing.*;
import com.sun.java.swing.text.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class CodeTextPane extends JTextPane {
public CodeTextPane() {

super();
//now we set our Document model
setDocument(new CodeDocument());//no keywords at this

point
}

}

public class CodeTextPane extends JTextPane {
public CodeTextPane() {

super();
//now we set our Document model
setDocument(new CodeDocument());//no keywords at this

point
}

public void setKeywords(Vector aNewSetOfKeywords){
Document doc = getDocument();
if (doc instanceof CodeDocument) {

CodeDocument codeDoc = (CodeDocument) doc;
CodeDoc.setKeywords(aNewSetOfKeywords);

}
}

public void setKeywords(String aNewSetOfKeywords[]){
Vector v = new Vector();
for (int i=0;i< aNewSetOfKeywords.length;i++){

v.addElement(aNewSetOfKeywords[i]);
}
setKeywords(v);

}
public Vector getKeywords(){

Vector keywords = null;

Document doc = getDocument();
if (doc instanceof CodeDocument) {

CodeDocument codeDoc = (CodeDocument) doc;
keywords = CodeDoc.getKeywords();

}

return keywords
}

}

package CodeEditor;

import java.beans.*;
import java.awt.*;

public class CodeTextPaneBeanInfo extends SimpleBeanInfo {

Class theBeanClass = CodeTextPane.class;

public CodeTextPaneBeanInfo() {
}

public PropertyDescriptor[] getPropertyDescriptors() {
return null;

}

public Image getIcon(int iconKind) {
return null;

}

public BeanInfo[] getAdditionalBeanInfo() {
return null;

}
}

public PropertyDescriptor[] getPropertyDescriptors() {
try {

PropertyDescriptor keywordsProperty = new PropertyDe-
scriptor("keywords", theBeanClass, "getKeywords", "setKey-
words");

keywordsProperty.setDisplayName("keywords");
keywordsProperty.setShortDescription("keywords");
keywordsProperty.setPropertyEditorClass(CodeEditor.Key-

wordsEditor.class);

PropertyDescriptor[] propertyDescriptors =
new PropertyDescriptor[] {keywordsProperty};

return propertyDescriptors;
}
catch (IntrospectionException ex) {

ex.printStackTrace();
return null;

}
}

public BeanInfo[] getAdditionalBeanInfo() {
Class superclass = theBeanClass.getSuperclass();
try {

BeanInfo superBeanInfo =
Introspector.getBeanInfo(superclass);

return new BeanInfo[] { superBeanInfo };
}
catch (IntrospectionException ex) {

ex.printStackTrace();
return null;

}
}

package CodeEditor;

import java.awt.*;
import java.beans.*;

public class KeywordsEditor extends PropertyEditorSupport {
private KeywordsEditorComponent editorComponent;

public KeywordsEditor() {
}

public boolean supportsCustomEditor() {
return true;

}

public Component getCustomEditor() {
if (editorComponent == null) {

editorComponent = new KeywordsEditorComponent(this);
}
return editorComponent;

}

public String getJavaInitializationString() {

Listing 6a: The Property Editor

Listing 5

Listing 4

Listing 3

Listing 2

Listing 1

ddiego@diegoware.com

37NOVEMBER 1999

Java COM

return "";
}

}

package CodeEditor;

import java.awt.*;
import java.beans.*;

public class KeywordsEditorComponent extends Panel {
private PropertyEditor propEditor;

public KeywordsEditorComponent(PropertyEditor anEditor) {
this.propEditor = anEditor;

}
}

public String getJavaInitializationString() {
Vector v = (Vector)getValue();
String s = "new String[] {";
Enumeration enum = v.elements();
while (enum.hasMoreElements()){

String keyword = (String)enum.nextElement();
if (enum.hasMoreElements()){

s += "\"" + keyword + "\",";
}
else{

s += "\"" + keyword + "\"}";
}

}
return s;

}

public class KeywordsEditorComponent extends Panel{
private PropertyEditor editor;
JLabel label1 = new JLabel();
JLabel label2 = new JLabel();
DefaultListModel keywords = new DefaultListModel();
JList keywordList = new JList(keywords);
JTextField keywordEdit = new JTextField();

JButton addBtn = new JButton();
JButton deleteBtn = new JButton();
JScrollPane listScroller = new JScrollPane(keywordList);

keywords.addListDataListener(new ListDataListener(){
public void contentsChanged(ListDataEvent e){

keywords_changed(e);
}
public void intervalAdded(ListDataEvent e){

keywords_changed(e);
}

public void intervalRemoved(ListDataEvent e){
keywords_changed(e);

}
});

private void keywords_changed(ListDataEvent e){
if (editor != null){

Vector v = new Vector();
Enumeration enum = keywords.elements();
while (enum.hasMoreElements()){

v.addElement(enum.nextElement());
}
editor.setValue(v);

}
}

if (editor != null){
keywords.removeAllElements();
Vector v = (Vector)editor.getValue();
Enumeration enum = v.elements();
while (enum.hasMoreElements()){

keywords.addElement(enum.nextElement());
}

}

Listing 11

Listing 10

Listing 9

Listing 8

Listing 7

Listing 6b: The Editor Component

Quickstream
Software

www.quickstream.com

Java is an excellent, network-savvy,
object-oriented language that’s well suit-
ed for implementing CORBA compo-
nents. Java’s object-oriented paradigm
separates an object’s interface from its
implementation, as does CORBA. Its
machine independence and wide avail-
ability allows CORBA objects to execute
on any platform running a Java Virtual
Machine. Today JVMs are available on
many systems, from mainframes to
microprocessors. This combination of
CORBA and Java creates an optimal envi-
ronment for implementing real-time
Web-based applications requiring no
client software except a browser.

CORBA Overview
CORBA’s Interface Definition Language,

used to define object interfaces, is where
the separation between interface specifi-
cation and implementation occurs. IDL is
a strongly typed, declarative-only lan-
guage resembling C++. IDL doesn’t define
object implementations, only object inter-
faces. An IDL compiler translates the IDL
into a set of stubs and skeletons imple-
mented in a target language such as Java.
These stubs and skeletons are a set of Java
interfaces and classes from which object
implementations and complete applica-
tions are built.

Following is an example of IDL for the
object called MyObject, which has one
method called getTimeStamp.

module MyPackage {
interface MyObject {

string getTimeStamp();
};

};

Running this IDL through an IDL-to-
Java compiler generates the Java classes
and interfaces containing stubs and
skeletons in a Java package called
MyPackage.

CORBA’s Object Request Broker (ORB)
locates objects, manages connections
and communications between stubs and
skeletons, and invokes object methods
on behalf of the client. The stubs and
skeletons perform various functions
such as marshaling data and operations.
The client invokes methods on remote
objects via the stub interface. In turn, the
server receives client requests through
the skeleton. Stubs and skeletons can be
implemented statically or dynamically.

The Dynamic Invocation Interface is
an approach that permits clients to dis-
cover information about objects at run-
time that may not exist at compile time.
CORBA’s Interface Repository can be
queried to discover, at runtime, a remote
object reference, its methods and
method parameters. DII provides a
greater level of flexibility than static IDL
stubs. The latter, however, are simpler
and offer better performance. The
Dynamic Skeleton Interface is the skele-
ton equivalent of DII. DSI provides a
runtime binding to an object that may
not be known at compile time. DSI
allows the server to determine a
requested method’s signature and
implement that method at runtime. An
object receiving a request doesn’t know
if the client request originated from a
DII or a static IDL stub. Similarly, the
client doesn’t know if the object imple-
mentation fulfilling the request uses an
IDL skeleton or DSI.

Implementing CORBA Applications
Two implementation approaches

exist for building on these stubs and
skeletons, the IS-A approach and the
HAS-A approach. The IS-A, or ImplBase
approach, builds on the stubs and skele-
tons using inheritance. The HAS-A, or
Tie approach, builds on the stubs and
skeletons using delegation. In the Tie
approach the object implementation
must implement the IDL interfaces.
Since Java doesn’t support multiple
inheritance, a class using the ImplBase
approach is limited to inheriting only
from the stub and skeleton classes. If the
object implementation must inherit
from any class other than the ImplBase
class, the Tie approach must be used.
• Java implementation of MyObject

using the ImplBase approach:

class MyObjectImp extends _MyOb-
jectImplBase {

public String getTimeStamp() { //
method body }

}

• Java implementation of MyObject
using the Tie approach:

class MyObjectTie implements _MyOb-
jectOperations {

public String getTimeStamp() { //
method body }

}

Objects are made available through a
server process that’s registered with the
ORB. Note that registering a server with
an ORB is vendor specific. The server
initializes the ORB, instantiates the

CORBA’s idea of separating interface from implementation is well suited to Java

WRITTEN BY
ROLF KAMP AND

THOMAS CZERNIK C
ommon Object Request Broker Architecture and Java are
among the newest emerging technologies revolving
around IP and Internet applications.The CORBA specifi-
cation defines an industry-wide standard infrastructure
that simplifies the integration of software systems using
object-oriented techniques. CORBA separates architec-
ture and implementation from interface specification,
allowing clients and servers to be implemented in any lan-
guage, on any platform.

I N T E R N E T A P P L I C A T I O N S

Java COM

38 NOVEMBER 1999

Real-Time Web-Based Applications
with Java and CORBA

39NOVEMBER 1999

Java COM

Tidestone
Technologies

www.tidestone.com

Java COM

40 NOVEMBER 1999

CORBA objects and passes control to the
ORB to handle incoming requests.
• Server implemented in Java using

ImplBase approach:

org.omg.CORBA.ORB orb =
org.omg.CROBA.ORB.init(args,null);
//initialize the ORB

// instantiate the CORBA object
MyObject ObjectRef = new MyObject-
Impl();

orb.connect(ObjectRef); // pass con-
trol to the ORB

• Server implemented in Java using Tie
approach:

org.omg.CORBA.ORB orb =
org.omg.CROBA.ORB.init(args,null);
//initialize the ORB

MyObject ObjectRef =
new _tie_MyObject(new MyObjectTie());

orb.connect(ObjectRef); //pass con-
trol to the ORB

Clients initialize the ORB and obtain
an object reference to the server by call-
ing the bind method. Using this object
reference, requests to the server can be
made as if the object resided in the
client’s address space.
• Client implemented in Java:

org.omg.CORBA.ORB.init(this,null);

// bind to server
MyObject ObjRef =
MyObjectHelper.bind(":MyServer","host
name");

// executes method getTimeStamp on
server
String TheTime = ObjRef.getTime-
Stamp();

CORBA Callback Methods
Applications, such as real-time stock

updates, inventory management and
network surveillance, require clients to
react in real time to changes or updates
that occur in the server. Callbacks are a
technique that makes it possible for the
server to execute methods on the client
as changes occur in the server.

Callbacks are a well-defined, easy-to-
implement, effective technique for devel-
oping real-time, Web-based clients.
When using callbacks, the client/server
relationship is reversed. Clients wanting
to receive real-time data register with the
server by passing a client object reference
to the server (see Figure 1). A proxy for
the client’s object is created in the server.

This proxy serves as a handle to the client
that the server uses to invoke methods on
the client. Servers wishing to use call-
backs with many clients need to store the
client object references as a data struc-
ture, such as Java’s Vector class.

By default, when executing CORBA
methods, callers block until the called
method returns. When using callbacks, a
deadlock situation can occur since
clients may invoke server methods from
within the callback method. To avoid
this possible situation, callback meth-
ods should be qualified with the IDL
keyword oneway. Calling objects don’t
block – instead, they continue immedi-
ately after invoking oneway methods.
Using these methods, servers don’t wait
until a method completes and may con-
tinue to accept method invocations. For
this reason oneway methods must have
a return type of void and should not
throw an exception.

The following IDL defines the inter-
faces for the objects MyCallback and
MyObject. Clients register with a server
by invoking MyObject’s registerCallback
and remove themselves from the serv-
er’s client list by invoking MyObject’s
removeCallback. MyCallback declares
the callback method receiveTimeStamp,
which the server invokes to update the
client’s timestamp.

module MyPackage {
interface MyCallback {

oneway void receiveTimeStamp(in
string servertime);
};

interface MyObject {
string getTimeStamp();
void registerCallback(in MyCallback

obj);
void removeCallback(in MyCallback

obj);
};
};

The client initializes the ORB, binds
to the server and registers by executing
registerCallback with an argument of
this (an instance of MyCallback). The

server uses the MyCallback object refer-
ence as a proxy to the client.

class MyClient extends _MyCallback-
ImplBase {
public MyClient(){

org.omg.CORBA.ORB.init(this,null);
MyObject ObjRef =

MyObjectHelper.bind(":MyServer","host
name");

ObjRef.registerCallback(this);
}
public void receiveTimeStamp(String
serverTime) {

// method body
}

}

The server’s registerCallback method
receives an instance of MyCallback and
stores it in its instance variable client.
The doCallback method executes
receiveTimeStamp on the client by mak-
ing reference to the client instance vari-
able. The server may execute doCallback
whenever it wants to update the time-
stamp on the client.

class MyObjectImp extends _MyOb-
jectImplBase {
MyCallback client;
public String getTimeStamp() {

// method body
}
public void registerCallback(MyCall-
back obj) {

client = obj;
}
public void removeCallback(MyCallback
obj) {

// method body
}
public void doCallback(){

// define method what will execute
on client

client.receiveTimeStamp("10:10
AM");
}
}

Understanding Network Traffic Generated by CORBA
One key element to understanding

performance in a CORBA system is the
network traffic generated by method
calls. Developers need to understand
when they’re using object references ver-
sus object instances. CORBA objects
always reside on the server and are
accessed by the client through methods
defined in the IDL. Prior to CORBA 3.0,
only object references could be passed
between servers and clients. CORBA
copies by value nonobjects such as Java
primitive data types. An object’s attri-
butes are retrieved from the server by
using an object’s accessor (get) method.

FIGURE 1

Client

Server Executes Method on Cl
ie

nt

Client Makes
Request Server

I N T E R N E T A P P L I C A T I O N S

41NOVEMBER 1999

Java COM

IAM Consulting
www.iamx.com

Java COM

42 NOVEMBER 1999

Each invocation of an accessor method
generates network traffic. The amount of
network traffic generated depends on
the amount of data retrieved and the
number of accessor methods invoked. If
a client needs to make frequent refer-
ence to object attributes that don’t
change often, network traffic can be kept
to a minimum by making a local copy of
the attributes on the client. Callbacks
shouldn’t be used to update the client-
side data.

The IDL compiler generates a pair of
Java methods for IDL variables tagged
with the attribute keyword. Each IDL
attribute generates accessor and muta-
tor (set) methods. The accessor method
returns the value contained in the class
variable. The mutator method is used to
modify the value of the class variable.
Only the accessor method is generated
for IDL attributes marked as read-only.
Method parameters may be marked
with the IDL keyword in, out or inout.
Parameters marked in are passed only
from the client to the server and are
viewed as immutable to the called
method. The inout keyword is used to
declare parameters modified by the
server. Parameters marked inout are
passed from the client to the server and
from the server back to the client. The
out keyword declares parameters
returned to the client from the server.
Since Java doesn’t support passing out
and inout parameters by reference, the
IDL compiler generates a Java Holder
class, which is instantiated to simulate
passing parameters by reference. The
best performance is achieved by using
parameters marked with the in keyword.

Following are IDL-defining attributes
that create a Java interface containing
accessor and mutator methods. These
methods are generated for the name
and gpa attributes. Since the ID
attribute is read-only, only an accessor
method is created.

interface Student {
attribute string name;
attribute float gpa;
readonly attribute long id;

};

interface MyObject {
Student getStudent(in long idNum-

ber);
};

A developer implements the Student
object by extending the IDL generated
_StudentImplBase class. StudentImpl
defines the attributes declared in the
IDL as private instance variables, along
with the accessor and mutator meth-
ods.

public class StudentImpl extends
_StudentImplBase {
private String name;
private float gpa;
private int id;
public StudentImpl(String pname, int
pid) {

name = pname;
id = pid;

}
public String name() {

return name;
}
public void name(String value) {

name = value;
}
public float gpa() {

return gpa;
}
public void gpa(float value) {

gpa = value;
}
public int id() {

return id;
}
}

The following client code demon-
strates the use of object references. After
binding to MyServer, the client obtains a
reference to the Student object by invok-
ing MyObject’s getStudent method. The
execution of the student.id, student.-
name and student.gpa methods gener-
ate network activity. Although invoca-
tions of these methods appear to oper-
ate on a local instance of class Student,
they actually access the Student object
that resides on the server (see Figure 2).

org.omg.CORBA.ORB.init(args, null);
MyObject ObjectRef =
MyObjectHelper.bind(":MyServer",
"hostname");

Student student = ObjectRef.getStu-
dent(1234);
System.out.println("Student's id: " +
student.id()
+ "Student's Name: " +
student.name());
student.gpa(3.9);
System.out.println("Student's gpa: "
+ student.gpa());

Using CORBA in a Web Browser
Java-enabled Web browsers act as a

common platform from which CORBA
applets may be launched. An ORBlet
downloaded to the Web browser permits
the execution of CORBA-enabled applets.
Browsers that are CORBA enabled, such as
Netscape’s Communicator, provide effi-
cient use of CORBA in applets since the
need to download an ORBlet is eliminated.
Netscape’s Communicator contains
Inprise’s Visigenics ORB. If an applet
requires an ORB other than the one con-
tained in the Web browser, the required
ORBlet must be downloaded when the
applet is downloaded. The HTML <param>
tag’s name and value attributes direct the
Web browser to use the downloaded ORB.

The following HTML code downloads
the CORBA-enabled applet Grid.class
contained in the file Grid.jar. IONA’s
OrbixWeb ORB is downloaded in the file
OrbixWeb301.jar. The HTML <param>
tags direct Netscape’s Communicator to
use IONA’s ORB rather than Inprise’s
built-in ORB.

<HTML>
<BODY>
<APPLET CODE=Grid.class
ARCHIVE=Grid.jar,
OrbixWeb301.jar CODEBASE=java_output>
<param name="org.omg.CORBA.ORBClass"
value="IE.Iona.OrbixWeb.CORBA.BOA">
<param name="org.omg.CORBA.ORBSingle-
tonClass"
value="IE.Iona.OrbixWeb.CORBA.BOA">
</APPLET>
</BODY>
</HTML>

Typically, applets initialize the ORB
and bind to the server in the applet’s init
method. Thereafter, applets may invoke
server methods in response to user
actions such as a button click. The serv-
er may run callback methods on the
client anytime after the applet’s init
method completes. In this way clients
receiving real-time updates from a serv-
er may be deployed requiring only a
Java-enabled Web browser on the client.

Summary
CORBA’s powerful concept of separat-

ing interface from implementation is well
suited to Java. This concept allows soft-
ware systems to communicate with each
other without regard to the client’s actual
platform. Real-time distributed systems
executing on a wide variety of clients can
be developed using the techniques dis-
cussed here. These applications execute in
the ubiquitous Java-enabled Web browser,
reducing client-side administration.

rfk@att.com tjc@att.com

FIGURE 2

Client
Client

Student Object
Reference

Resides in Client

Method Invocations
act on Object

Resident in Server

Server
Actual Student
Object Resides

in Server

AUTHOR BIOS
Rolf Kamp is a senior

technical staff member
with AT&T’s Operations

Technology Center,
working on network

operation support
systems. He is also an

adjunct faculty
member at Brookdale

Community College.

Thomas Czernik is also a
senior technical staff
member with AT&T’s

Operations Technology
Center, working on
network operation
support systems.

I N T E R N E T A P P L I C A T I O N S

43NOVEMBER 1999

Java COM

Object
Int’l Software

www.oi.com

ParaSoft’s Jtest 3.0 is a powerful auto-
mated tool for testing Java classes.
Developers can unit-test their code for
completeness and standards compli-
ance and conduct regression tests to
ensure that changes they’ve made to
their code haven’t introduced errors.

Environment
I installed Jtest on an IBM Thinkpad

600E running Windows NT 4.0 Worksta-
tion, Service Pack 5, with 128MB of
RAM. According to Jtest’s documenta-
tion, it’ll run on Windows NT/95/98,
with support for Solaris and Linux com-
ing in the next few releases. Minimally,
Jtest recommends you run with a Pen-
tium 233 with 128MB of RAM. It also
now supports Java Development Kit ver-
sion 1.1.x and version 1.2. One of these
JDKs must be in your path in order to
perform all of the tests available.

Installation
Installation was simple; within minutes

I was able to execute tests using the demo
class installed with the application. The
installation comes with a well-written tuto-
rial that explains in easy-to-follow terms all
of Jtest’s features. That said, the application
still relies on clumsy message boxes to
explain what the application is doing and
what the user may do next. Thankfully,
these messages can be turned off.

Static Analysis
Performing code reviews is a part of any

successful project. These reviews can
catch many logic errors as well as ensure
adherence to standards. Jtest performs
these reviews by analyzing your code and
comparing it to a set of rules. The user can
customize these rules by clicking the Global
button, opening the Static Analysis node,
opening the Rules node and then opening

the Built-in Rules node. From here you can
enable or disable specific rules or entire rule

categories by their severity levels.

White Box Testing
Anyone who has survived a long testing pro-

ject knows that one of the most tedious process-
es is writing test cases. Jtest is the first testing
application that generates unit test cases based
on the internal structure of your classes. Using
patented technology, Jtest examines bytecode,
trying to break the class by attempting to pass
unexpected variables to its methods.

To begin white box testing, open Jtest and
browse to the class you’d like to test. To test
multiple classes, go to the Project Testing UI
and select the directory, zip or JAR file of class-
es. After this is completed, press the start but-
ton and wait for Jtest to conduct its tests.

Once the test is completed, Jtest will display
the list of errors it generated. Right clicking on
any of these errors will allow you to view the
code on which the error was generated. This
error can also be suppressed in the future if, for
example, you know that a null would never be
passed into these methods.

Black Box/Regression Testing
Black box testing checks to see whether the

class is behaving according to its specification.
During a normal testing phase, these test cases
would have to be written by poring through writ-
ten specifications and compiling combinations
of possible inputs. Jtest provides these inputs for
you and tests all possible combinations.

After running your first test on the class, you
can view which inputs Jtest used and add any
custom ones you think are necessary by select-
ing the View Test Cases button. After all the
necessary test cases have been run, you can
validate the output.

This validated output will serve as a baseline
every time Jtest is run on the class and will per-
form regression testing by ensuring that any
changes made to the class since the last test
haven’t changed these outcomes.

Summary/Recommendations
Jtest is unique in its ability to generate test-

ing inputs and will save any development pro-
ject a significant amount of time. Its automated
execution of both white and black boxes sets it
apart as a testing tool. Its testing should
strengthen your project’s code and allow devel-
opers to spend more time on coding and less
time writing test cases. Jtest’s only drawback is
its price, which still remains slightly high at
nearly $3,500 per seat.

Jtest!
by ParaSoft

jnester@csc.com

AUTHOR BIO
Jennifer Nestor, a staff consultant with Computer Sciences

Corporation, has been programming in Java for over two years.
She has a BA in mathematics and is currently pursuing an

MBA. She can be reached at jnester@csc.com

REVIEWED BY JENNIFER NESTOR

Jtest!: ParaSoft
Web: www.parasoft.com

Phone: 888 305-0041

Test Environment:
Client/Server: Gateway Solo 366, 256MB RAM, 10

gigabyte disk drive,
Windows NT 4.0 (Service Pack 4)

Pricing: $3,500.00

Java COM

44 NOVEMBER 1999

Jtest! Displays error messages from each type
of testing in the bottom of the GUI

Jtest! White-box testing

Jtest! Testing an application

Jtest! Testing a class

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

45NOVEMBER 1999

Java COM

New Atlanta
www.newatlanta.com

S Y S - C O N R A D I O

Q:
A:Q:
A:
Q:
A:Q:
A:
Q:
A:

Q:
A:

Q:

Q:
A:

Q:
A:

JDJ: We’re here to talk about Object
International, TJ3, your classes and
the book that that was recently
released.
Coad: Object International is focused on
helping teams deliver frequent tangible
working results around the globe.

JDJ: Tell us about some of the new
features of Together/J3 that you’ll be
releasing soon.
Coad: Together/J is something I’ve been
working on for 10 years. We built earlier
versions of this technology in C++, but not
until Java have we been able to do all the
things we wanted to do to give the devel-
oper a creative environment to work in.
The field test for T/J3 began June 21, 1999.

JDJ: Can you give us an idea of some
of the enhancements from previous
versions, some of the new features?
Coad: A hallmark of Together/J is simulta-
neous round-trip engineering, which is still
there. New things in TJ3 include Gang of
Four Pattern Support and Java modeling
components.

JDJ: Your book’s name is Java Model-
ing in Color with UML: Enterprise
Components and Process, which you
coauthored with Eric LeFebvre from
Montreal, Canada, and Jeff De Luca
from Melbourne, Australia. Is any of
the material available online?
Coad: A lot of the content is posted at
www.oi.com (that’s for Object Internation-
al). I try to put as much content on the
Web site as I can without my editor get-
ting mad, so you can read freely and learn
a lot about this approach.

JDJ: Why did you write the book?
What did you see as an issue?
Coad: I started modeling with a team in
Singapore in September 1997. And this
team was stuck. They had spent two years
with a well-known author and Java design
practitioner, but they had real problems.

The project manager realized that after two
years they had large object models with
just data and no methods and they hadn’t
delivered a single line of source code. My
job was to come in and flip this team in a
five-week period. I knew I wanted to teach
on four categories, four archetypes, and
that day on the table there were four col-
ors of Post-it notes. I grabbed the yellow
one and said, “This is a role.” Took the
green one and said “This is a person, place
or thing.” And so on. We went through
four colors and started building a model.

The fascinating thing was after a week or
two, we could see, on the wall, a model
with a wave of color going from yellow to
pink to green to blue. Even though we
couldn’t read the labels, we could tell things
about the shape of the overall model.

During those weeks both newcomers
to modeling and business experts came to
me again and again and said, “Pete, we
understand that you’ve never modeled in
color before, but can you tell us, please,
how it’s possible that you could build
effective models if you didn’t have color.”
Through their eyes I saw the potential
importance, in terms of what it would
mean in model content, if we could really

develop these ideas in practice. That’s
what we really worked to do.

JDJ: We’re going to switch gears
again and go back to TJ3. Could you
give us some more info?
Coad: We have the white board edition
that developers use around the globe.
There are no size or time limits in this prod-
uct. We have other features aimed at corpo-
rate developers, such as nine UML 1.3 dia-
grams supported in the product. Documen-
tation generation is especially important
with our corporate clients like Home Depot.

You can actually launch other tools
from within TJ3, e.g., you can launch an
external editor, work in it and come back.
TJ notices the update and auto-updates. In
addition, you can invoke a compiler from
TJ3 and if the compiler were to turn back
error messages, TJ3 captures them; you
can then navigate to each point in source
code and models to edit your source,
make the corrections and then fire off the
compiler once again.

JDJ: What do you see as the most
innovative, most interesting aspect
of Together/J?

Coad: Three things – patterns, compo-
nents and simultaneous round-trip.

JDJ: What is in the future for Together/J?
Coad: We’re keenly interested in what
makes sense with EJB. This summer we
released Together Enterprise, which has
Java and C++ support in it. It also has cus-
tom diagraming so if you’re interested in
real time and you’re not happy with UML,
you can actually adapt the diagrams and
customize them. In addition, if there are
more diagrams beyond UML (you could
imagine someone actually coming up with
more diagrams), you can actually define
your own diagrams in Enterprise and have
support.

Another thing we did in late summer
with the Enterprise product is moving into
the data modeling space so we have an
ER diagramming tool that for JDBC you
can forward-engineer into DDL and then
reverse-engineer from the data dictionary.

JDJ: That’s great. Now before we
close up, do you have any final
words of wisdom? Anything to wrap
up the world-according-to-Peter-
Coad kind of thing?
Coad: What I would ask is that people
consider going to oi.com, then go to the
JM-book.HTM page and download the
first chapter on Java Modeling in Color.
The archetypes and color are explained
there with examples. There are sequence
diagrams that show the interactions. There
is a template in there of 12 classes in four
colors and if people really understand that
one template, they’ll have a template of
how I’ve built models over the past 10-
plus years. That same template also
applies to the 61 examples in the book.
That content is at our Web site and it’s
free. You can download it, get some color
Post-it notes and put it to work.

So please try out this color modeling
for yourself and see how much more
effectively you might be able to work with
the experts, and the developers.

PETER COAD
OF OBJECT INTERNATIONAL

Broadcast live from San Francisco at JavaOne
INTERVIEW WITH...

PETER COAD OF OBJECT INTERNATIONAL

Java COM

46 NOVEMBER 1999

47NOVEMBER 1999

Java COM

InetSoft Technology
Corp

www.inetsoftcorp.com

Java COM

48 NOVEMBER 1999

Object
www.objectdes

49NOVEMBER 1999

Java COM

Design
sign.com/javlin

50 NOVEMBER 1999

Java COM

How can Java classes be used as scriptable components? DCOM, like
CORBA, provides both static and dynamic invocation of objects. DCOM
uses type library to provide metadata to do the dynamic invocation and
introspection similar to CORBA’s interface repository or Java’s introspec-
tion mechanism.

IDispatch, a standard COM interface that supports Automation (late
binding), is great for scripting languages such as Perl, Python, VBScript,
JScript and so on. The Microsoft JVM implements IDispatch automati-
cally for all Java objects. Microsoft refers to this feature as AutoIDispatch.
Before AutoIDispatch, Java programmers had to write their own IDL
files. Now all we have to do is create a Java class. Any public methods or
member variables are automatically exposed via Automation. Anything
that makes my job easier, I like.

Java programmers don’t need to create interface definition files
(IDL/ODL) to create COM objects. In addition, special tools like IDL
compilers aren’t necessary when doing Java COM development.

To implement a COM object in Java using AutoIDispatch, follow these
steps:
1. Write a Java class and compile it. The class must have public members

and methods.
2. Register the class using JavaReg.

DCOM Servers
Once you create a COM object, you need a server to serve the objects

up to the world. A COM server is a container that holds COM objects. In
essence, it’s a class, a dynamic link library or an executable file that con-
tains COM classes, which in the case of Java relates to Java classes. The
COM server has the ability to turn classes into objects. The server imple-
ments the IClassFactory interface, which provides a standard way to
request having a COM class instantiated into a COM object.

You won’t actually need to create servers; they can be created via
MIDL (Microsoft IDL compiler) or you can use the default one provided
by the Microsoft Java SDK. In addition, COM clients don’t need to deal
with IClassFactory directly because the COM library handles this when
you call CoCreateInstance or the extended version, CoCreateInstanceEx.

The COM client asks the COM library for a given class via a CLSID. The
CLSID can be looked up in the registry. The COM library goes to the reg-
istry and looks up the CLSID, then instantiates a server, which must pro-
vide an IClassFactory interface so that the COM server can create the
object on behalf of the COM library. For the COM client to ask the COM
library for a class, the COM client has to find the CLSID in the registry.
Therefore, the server must register a CLSID for every COM object it’s able
to create. Here are the three types of COM servers:
1. In-process servers execute in the same process (DLL, OCX, INPROC)

context as the client. Local Java classes exported as COM objects run
in this mode unless they’re using a surrogate process that they need to
run remotely.

2. Local servers run in a separate process (EXE) from their clients but still
on the same machine. Basically, local servers run over LPC.

3. Remote servers execute in a separate process on a remote machine.
The clients use RPC to talk to the remote server. However, a client
doesn’t have to know that the server is remote. This may be complete-
ly transparent to the client. Java classes exported as COM objects can
be run in this mode only if they use a surrogate process, which can be
the default surrogate process provided by the COM library. This
process is covered in the code examples.

The COM library supplies three ways for COM clients to attach to a
remote server and request a COM object:
1. The server name is associated with the ProgID of the object in the

Windows Registry.
2. An explicit parameter is passed to CoCreateInstanceEx, CoGetInstance-

FromFile, CoGetInstanceFromStorage or CoGetClassObject specifying
the server name.

3. Monikers are used.

Newer clients that are DCOM savvy have the flexibility to specify the
server they want to connect to, which is essential with some applica-
tions. The newer servers can specify the server name as a parameter to
CoCreateInstanceEx.

J D J F E A T U R E

Developing with
DCOM and Java

Part Two

WRITTEN BY RICK HIGHTOWER

Part One of this article appeared in the July issue of JDJ (Vol. 4, issue 7)

Creating a Java COM Object
This code example assumes you have Microsoft’s Java SDK 3.1 or high-

er. The Microsoft Java SDK is freely downloadable from its Web site. If
you don’t have it, get it from www.microsoft.com/java. Once you’ve
downloaded it, follow the install instructions closely.

For the first code example we’re going to create a simple COM server,
then register it in the system Registry so other programs can find it.

In your favorite editor, enter the code to create the HelloCOM COM
Program class HelloCOM:

{
public int count = 0;

public String getHello()
{

count ++;
return "Hello from COM " + count;

}

Save this in a file as HelloCOM.java. Now you need to compile it. Use
the Microsoft compiler; from the command line, type:

C:\jsdk>jvc HelloCOM.java

Next, you need to register it with JavaReg by typing the command
exactly as shown in the following command line. If successful, you
should get a dialog box.

C:\jsdk>javareg /register /class:HelloCOM /progid:Acme.HelloCOM

JavaREG is a tool for registering Java classes as COM components in
the system Registry. This tool also enables you to configure the COM
classes you create to execute remotely.

You now need to copy the HelloCOM.class file to \java\lib in the Win-
dows directory. You’ll need to substitute drives and directories as needed:

C:\jsdk>copy HelloCOM.class c:\winnt\java\lib\HelloCOM.class

That’s it! You just created your first COM object. Remember, the only
difference between COM and DCOM, from the programmer’s perspec-
tive, is a few Registry settings and the length of the wire. Let’s do some
poking around and see this firsthand.

Exploring COM with OLEVIEW
OLEVIEW, the OLE/COM object viewer, is a development, administra-

tion and testing tool. Let’s work with it to get a feel for how HelloCOM is
configured in the registry.
1. If OLEVIEW is on your path, type OLEVIEW at the DOS prompt. Oth-

erwise, find it and execute it.
2. Select View, ExpertMode.
3. Select Object, CoCreateInstanceFlags, CLSCTX_INPROC_SERVER.
4. Expand the node labeled Grouped by Component.
5. Expand the Java Classes mode under Grouped by Component.
6. Find the class you created in the previous exercise (HelloCOM).
7. Click this node once.

The CLSCTX_INPROC_SERVER component won’t run as a remote
server. Local and remote servers run in separate processes. Inproc is
associated with a DLL, so when the class is registered it’s associated with
the DLL that runs Java classes (namely, msjava.dll).

Notice that the CLSID and AppID are listed under the Registry tab on
the right side. When we executed JavaREG earlier, we used the following
for the class and ProgID arguments:

/class:HelloCOM /progid:Acme.HelloCOM

Notice how the names map to this ProgID.
Now let’s look at the information we can glean from the Registry tab:

• The inproc server is listed as msjava.dll.
• The threading model is specified as Both.
• The Java class associated with this COM object is HelloCOM.
• The ProgID is Acme.HelloCOM.

Let’s test this COM object. When you double-click the HelloCOM
node, OLEVIEW will try to instantiate the COM class associated with the
CLSID listed (an easy way to test if everything is set up). The following
events will happen when you double-click this node:
• OLEVIEW takes the ProgID and finds the CLSID (remember, the CLSID

is a 128-bit GUID that identifies our COM class) for this COM class.
• OLEVIEW calls CoCreateInstance, passing it the CLSID and the CLSC-

TX_INPROC_SERVER.
• The COM library loads msjava.dll and negotiates with its IFactory to

get a COM object representing our Java class. See Figure 1.

The bottom line is that OLEVIEW is actually loading a live version of
our class. This is a powerful tool for testing COM classes. Next, notice
that the node has been expanded to show all the interfaces that this

51NOVEMBER 1999

Java COM

COM Client

COM LIB

Proxy Object

LPC

CLIENT SERVER

1

2 Stub COM
Component

(Service)LPC

3

Co
Cr

ea
te

In
st

an
ce

LPC Manager
(Kernel)

FIGURE 1

from the
Microsoft
JVM,

Java COM

52 NOVEMBER 1999

COM class supports. Notice also that it supports the following interfaces:
• IUnknown: Interface negotiation and lifecycle management
• IDispatch: Dynamic invocation for scripting languages
• IMarshal: Custom marshaling

You should be familiar with these interfaces from the earlier discus-
sion of the architecture in Part One of this series. From there we can
ascertain that Microsoft has defined some kind of custom marshaler to
marshal parameters to methods and return types between processes
and machines.

Scripting the HelloCOM Object
We’re going to use the COM server you just created with Visual Basic.

This code example assumes you have some form of scripting language
that works as an Automation controller. If you don’t, don’t worry about it.
An example in the book mentioned at the end of this article shows you
how to create an Automation controller in Java without a type library,
i.e., using raw IDispatch.

I chose Visual Basic for this example because many people know how to
use it, and it’s widely available. If you can’t find a scripting language that suits
your fancy, don’t sweat it. Just skip the scripting section of this example.

Any Automation-capable scripting language will do. You can use
LotusScript (which comes with Notes and Lotus 1-2-3), VBScript, and
Visual Basic for Applications (VBA) (which comes with Word and Excel).
Two of my favorite Automation-capable scripting languages are Perl and
Python. Both provide examples for doing Automation. They’re freely
available at www.perl.org and www.python.org, respectively.

From your favorite Automation controller scripting language, add a
button to a form called Command1. Then add the following code.

Private Sub Command1_Click()
Dim helloCOM As Object
Dim count As Integer

Set helloCOM = CreateObject(“Acme.HelloCOM”)
MsgBox helloCOM.getHello
count = helloCOM.count

End Sub

Notice that we use Visual Basic’s CreateObject to instantiate the COM
class into an object. Also notice that we pass CreateObject the ProgID of
the COM class. You can probably guess what Visual Basic is doing under-
neath, but let’s recap to make sure:

• CreateObject takes the ProgID and finds the CLSID for this COM class
in the system Registry.

• CreateObject then calls CoCreateInstance, passing it the CLSID and
the CLSCTX_INPROC_SERVER, which tells CoCreateInstance to cre-
ate this object as an in-process COM server.

• The COM library loads msjava.dll and negotiates with IUnknown to
get an IFactory interface.

• The COM library then uses the IFactory to get a COM object repre-
senting the Java class. (Actually, at this point IFactory returns an IDis-
patch that represents the interface to the COM object.) See Figure1.

Now let’s consider what happens when the code example makes the
following call:

MsgBox helloCOM.getHello

Here we’re taking what helloCOM.getHello returns to use as a parameter to
MsgBox. MsgBox is just a Visual Basic method that pops up a message box
with a string that you give it. Underneath, Visual Basic is calling the IDis-
patch.Invoke method with the name of the method we defined in the Java
class getHello. IDispatch.Invoke passes back a return type of variant. A variant,
as you’ll remember from Part One, can hold any type of value. Visual Basic
then works with the variant to see what it contains (in this case, a string).

You may wonder why you’re being prepped with all this background
information. AutoIDispatch doesn’t provide a type library. If it did, you
could use JActiveX (a tool from the Microsoft Java SDK that wraps COM
objects into Java classes) to create wrapper functions around the COM
class you created (which we’ll show you how to do in later lessons). With-
out JActiveX, creating wrapper classes can be a little tough.

Creating a Java DCOM Object
In this exercise, a duplicate of the first, we’re going to create a remote

COM object. We’re going to use a different class name from the Hel-
loCOM Java class – HelloDCOM – so you can compare the Registry set-
tings of HelloDCOM with those of HelloCOM in the next exercise. As you
did in the first example, using your favorite editor, enter the code below
to create the HelloDCOM DCOM object.

class HelloDCOM
{

public int count = 0;

public String getHello()
{

count ++;
return “Hello from COM” + count;

}
}

Also, as before, you need to compile. Use the Microsoft compiler as
follows:

C:\jsdk>jvc HelloCOM.java

Next, you need to register it with JavaReg:

C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/surrogate

The only real difference between this step and what you did in the first
exercise is the addition of the /surrogate parameter, which is essential
for doing remote objects. The JavaReg /surrogate parameter allows the
system-provided surrogate process to wrap the msjava.dll file in a
process. This is needed – otherwise the DLL would have to run inproc,
which can’t be used with remote objects.

Again, as before, you need to copy this HelloDCOM.class file to the
Windows directory:

CLIENT SERVER
(D)COM Client Proxy Object Stub COM Component

(Service)

(D)COM LIB

RPC
1

2

3

4

5 6
C

oC
re

at
eI

ns
ta

nc
e

C
oC

re
at

eI
ns

ta
nc

e

DCOM
Net

TCP/IP or
Named Pipes

SCM SCM

RPC

(D)COM LIB

TCP/IP or
Named Pipes

FIGURE 2 Remote activation

53NOVEMBER 1999

Java COM

KL Group Inc.
www.klgroup.com/chart

Java COM

54 NOVEMBER 1999

C:\jsdk>copy HelloDCOM.class d:\winnt\java\lib\HelloDCOM.class

To test this setup, let’s run the OLEVIEW program from the second
exercise. Go to the HelloCOM class and try to instantiate. This will test to
see if everything is working okay.

From OLEVIEW select View.ExpertMode and also set the Object.Co-
CreateInstance flags to CLSCTX_LOCAL_SERVER and CLSCTX_RE-
MOTE_SERVER. It’s essential that CLSCTX_INPROC_SERVER not be
selected.

Expand the Java Classes node, then the Class HelloDCOM node. If the
node opens, the COM class you created was instantiated to a COM object.
This essentially tests that everything is running okay. Now compare all the
parameters and settings in the Registry with the settings to HelloCOM. Go
through the steps from the second exercise with HelloDCOM.

To actually use the COM object remotely, you’re going to need to
familiarize yourself with another tool: DCOM Configuration (or DCOM-
CNFG). DCOMCNFG is included with DCOM for Windows 95 and Win-
dows NT with Service Pack 2 (SP2) or Service Pack 3. You can use it to set
application properties, such as security and location.

On the computer running the client application, you must also speci-
fy the location of the server application that will be accessed or started.
For the server application you’ll specify the user account that has per-
mission to access and start the application to the client computer.

Configuring the Server
Here are the steps needed to configure the server:

1. At the DOS prompt, type DCOMCNFG (or launch it any way you pre-
fer; it’s in the Windows \System32 directory).

2. Select Java Class: HelloDCOM in the Applications tab’s Application list
box.

3. Double-click Java Class: HelloDCOM or press the Properties button.
4. Another dialog box pops up called Java Class: HelloDCOM.

Ensure that the words DLLSurrogate appear next to the application
type in the General tab. This is essential for remote operation of Java
classes, as mentioned previously.

5. Go to the Security tab.
6. Select the Use Custom Access permission.
7. Press the Edit button to edit the access permissions.
8. Add the user name with the Add button. (Press Show Users in the

Add Users and Groups dialog box.)
9. Set their permissions to Allow Access in the type of permission.

10. Select the Use Custom Launch permission.
11. Press the Edit button to edit the access permissions.
12. Add the user name with the Add button. (Press Show Users in the

Add Users and Groups dialog box.)
13. Set their permissions to Allow Access in the type of permission.

Configuring the Client
Here are the steps needed to configure the client:

1. Run the JavaReg tool on the client machine. The following line is
entered as a continuous line at the DOS prompt without a line break:

C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/clsid:{CLSID} /remote:servername

2. Set the CLSID to the 128-bit CLSID associated with this class. You can
get this value by looking it up in OLEVIEW.

3. Set the server name to the name of your remote machine. Here’s an
example of what it might look like:

javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/clsid:{064BEED0-62FC-11D2-A9AF-00A0C9564732} /remote:azdeals08

4. Next, you can use OLEVIEW on the client to ensure that you can con-
nect to the remote server. This step should be familiar to you by now.

It’s the third time we’ve used OLEVIEW. Go through the steps from the
second exercise with OLEVIEW and note the differences between Hel-
loDCOM on the client and HelloDCOM on the server.

Demonstrating Access
From your favorite Automation controller scripting language, add a

button to a form called Command1 and then add the code shown below,
which demonstrates helloDCOM Class Access.

Private Sub Command1_Click()
Dim helloDCOM As Object
Dim count As Integer

Set helloDCOM = CreateObject("My.HelloDCOM")
MsgBox helloDCOM.getHello
count = helloDCOM.count

MsgBox helloDCOM.getHello
count = helloDCOM.count

End Sub

We now pass the name of the COM class’s ProgID to CreateObject. The
Visual Basic runtime library initiates a similar process, as described in
previous exercises. Notice that we use Visual Basic’s CreateObject to
instantiate the DCOM class into an object. Also notice that again we pass
CreateObject the ProgID of the COM class. By this point you should be
able to guess what Visual Basic might be doing underneath, but let’s
recap one more time:
• CreateObject takes the ProgID and finds the CLSID for this COM class

in the system Registry. The Visual Basic runtime notices that the object
being requested is a remote object.

• CreateObject then calls CoCreateInstance, passing it the CLSID, which tells
CoCreateInstance to create this object as a remote process COM server.

• The local machine’s SCM contacts the remote machine’s SCM.
• The remote machine’s SCM uses the COM library to load msjava.dll in

a surrogate process and then negotiates with IUnknown to get an Ifac-
tory interface.

• The COM library then uses the IFactory to get a COM object repre-
senting the Java class. (Actually, at this point, IFactory returns an IDis-
patch that represents the interface to the COM object.)

• The IDispatch reference gets marshaled back to the local machine so
that the VB application (the COM client) can begin making calls. See
Figure 2.

Conclusion
You know how to create a local COM server and a remote COM server.

You know how to test both a local and a remote COM server with OLE-
VIEW. You know how to configure a COM server to be a remote server
with JavaReg and DCOMCNFG. If you read this article and the previous
one, you should have a feel for the difference in the architectures of
DCOM, CORBA and RMI.

Reference
In the book Java Distributed Objects by Bill McCarty and Luke Cassady-

Dorion, the subject of Java DCOM programming is covered in more detail
with more examples. The book also covers RMI as well as CORBA (with an
emphasis on CORBA). I wrote chapter 20 on DCOM, which covers Java and
DCOM in greater detail, how to create callbacks in DCOM and how to use
JActiveX to create Java wrappers around existing COM components. Also,
I have an example that uses late bound calls using IDispatch.

AUTHOR BIO
Rick Hightower, a senior software engineer at LookSmart, a category-based Web directory, has been writing
software for a decade, from embedded systems to factory automation solutions. Rick recently worked at
Intel’s Enterprise Architecture Lab, where he researched emerging middleware and component technologies.

rick_m_hightower@hotmail.com

55NOVEMBER 1999

Java COM

Insignia Solutions,
Inc.

www.insignia.com

Java COM

• Support for Windows NT only (not cross-platform; UNIX still pre-
ferred for high-end)

• Proprietary; lock-in to Microsoft as vendor
• No support for standards like CORBA

J2EE Levels the Playing Field
As vendors announce J2EE capabilities in their servers, we’ll see an

interesting phenomenon: every server will initially appear the same.
Clearly, vendors will need to seek ways to differentiate their products. We
predict that this differentiation will center on three layers (see Figure 1).

In the bottom layer vendors will try to differentiate their base J2EE
capabilities by touting higher performance, better reliability or manage-
ment tools. Differentiation will be minimal as many vendors make the
same claims, which will be hard for customers to evaluate. As a result, we
see the J2EE layer soon becomes a commodity.

In the value-add layer above the J2EE standard, vendors can differen-
tiate by adding technology value such as integrated development tools,
connectors or data architectures for dealing with legacy and nonrela-
tional data. Analysts, including Gartner and Meta, recognize integrated
development tools as a key differentiating feature for application
servers. Development projects are typically carried out by a mix of
expert 3GL Java developers (few and hard to come by) and 4GL-style
developers (the majority of corporate developers) migrating from tools
such as PowerBuilder and Visual Basic. Expert Java developers fre-
quently have a preferred code editor and avoid productivity tools, but
4GL developers look for tightly integrated tools that can provide huge
productivity gains as well as help them to develop according to “best
practices” that aren’t otherwise obvious. The bottom line: integrated
development and deployment tools will speed time-to-market, which is
key to customers.

Content management is another value-added area where vendors differ-
entiate their servers. Vendors realize that, in a large percentage of Web appli-
cations, application content drives users to do transactions. For example, in
e-commerce sites product catalogs or investor research drives the purchases
and trades. Content management features include the ability to author and
create content easily, store it in a database, publish database fields to URLs
on the Web, version control, approval workflows and full-text indexing.

The application layer is the third place where differentiation will
occur. Smart vendors realize that the key reason customers buy applica-
tion servers is to solve business problems. A few categories of business
problems are common, and as such it’s possible to save customers large
amounts of time by offering an application framework that provides pre-
built components that can be easily customized and extended to meet
customer-specific requirements. This provides a faster time-to-market
than any feature in an application server, and is valuable to customers.

Conclusions
Buyers and users of application servers will benefit from the J2EE

standard. It will provide a clear standard for developing three-tier dis-
tributed applications as well as an industry-standard skill set that devel-
opers will learn. We highly recommend that developers learn how to
make use of the J2EE standard as it will rapidly become the most highly
valued skill set in organizations wanting to use the Web in their business.

J2EE “best practices” aren’t yet widely known or documented. We
strongly recommend that organizations use experienced consultants on
the project teams of their first J2EE projects to learn these best practices
and to avoid the pitfalls of poor development.

J2EE will “commoditize” the base application server functionality,
causing smart vendors to differentiate their products in either the tech-
nology value-add and/or application layer. Buyers should evaluate ven-
dor strategies according to their own set of priorities.

For a resource area on J2EE and Java development,visit devcenter.sil-
verstream.com.

FROM THE INDUSTRY —continued from page 7

When Bruce Scott
(cofounder of ORACLE)
started PointBase, Inc.
he chose
Java Developer’s Journal
as PointBase’s exclusive
advertising partner!

We Know How to Create Success Stories!

57NOVEMBER 1999

Java COM

Riverton
www.riverton.com

…Or how to be sure your first CORBA project isn’t your last

WRITTEN BY
STEVE TOCKEY

CORBA Project Survival

C
ongratulations! You’ve just been designated the project
manager of your first CORBA project! “Help!” you say?
Even though you may not have any CORBA experience at
all, you needn’t panic.This article describes how you can
grab this bull by the horns and guide your project to a suc-
cessful completion. Not only can you survive your first
CORBA project, but you can do everything in your power
to make it a success. Luck isn’t the missing ingredient –
knowledge is.

C O R B A C O R N E R

Java COM

58 NOVEMBER 1999

This article describes how I approached
my first CORBA project – and my second.
It also describes how I’d approach my next
CORBA project, the next one, and so on.
This article is based loosely on Steve
McConnell’s award-winning books Soft-
ware Project Survival Guide and Rapid
Development (see References 1 and 2).
They provide some additional discussion
of the approach described here.

The Project Charter
I start a project by clarifying its “char-

ter.” At a minimum, the project’s charter
defines its goals, objectives, completion
criteria, resources and constraints. It
really doesn’t matter what form the pro-
ject charter takes, such as a formal doc-
ument, a memo or even an e-mail mes-
sage. The critical point is that the project
manager and the project team have an
explicit agreement with the project
stakeholders over what constitutes pro-
ject success.

The Risk Assessment
The second step in the project is the

risk assessment. In this step we try to
identify the major stumbling blocks that
could prevent the project team from
achieving success.

Risk can be defined as “the possibility
of an unwanted consequence of an
event or decision.” There are two impor-
tant components of this definition. First,
unlike the financial markets, software
project risk is not a good thing – there’s
no upside to it. Second, software project
risk is a probability. A “problem,” howev-
er, is a certainty; it’s a previously known
or unknown risk that has already mate-
rialized.

The steps in a risk assessment are as
follows:

1. Risk identification
2. Risk analysis
3. Risk prioritization

Risk Identification
The most abstract, highest-level risks

are the same on every project:
• Cost overrun
• Schedule overrun
• Quality underrun
• Functionality underrun

Except for outsourced projects, it
ends up being impractical to deal with
software project risk at this high a level.
It’s necessary to drill down one level and
ask, “Why might the project experience
a cost overrun?” “What are the reasons
why we might experience a schedule
overrun?” etc.

One effective way to identify risks is to
start with a list of generic software pro-
ject risks. Several such lists are available,
including one at www.construx.com
(click on Software Resources, then Soft-
ware Development Checklists, then
Complete List of Schedule Risks). Let the
team identifying risks select those can-
didates that warrant further investiga-
tion from the generic list. Don’t limit risk
candidates to what’s on the prepared
lists. Be willing to consider any factor
about the project that could cause diffi-
culty. Generally speaking, project risks
relate to the following project character-
istics:
• The product itself (complexity, size,

the “–ilities,” such as reliability, porta-
bility, etc.)

• The processes, tools, techniques and
technology being used (e.g., CORBA)

• The project team itself (size, abilities,
desires, team cohesion)

• Parent organization(s)

• Supplier(s) and subcontractor(s)
• Customer(s)

Since this is probably your first
CORBA project, it’s likely to be everyone
else’s as well. Some common CORBA-
specific technology risks for first-time
projects are:
• Lack of project team familiarity with

CORBA and/or the specific ORB product
• Immaturity or instability of the ORB

products
• Not meeting performance require-

ments (e.g., insufficient network
bandwidth)

Risk Analysis
In risk analysis the probability and

severity of each candidate risk is esti-
mated. The probability estimate is a
judgment of how likely we think it is that
the risk will turn into a problem. Proba-
bilities can be estimated using any num-
ber of scales, from a simple “low-medi-
um-high” scale up to a numeric proba-
bility. For example, “If nothing is done to
prevent it, there is a 40% probability that
our lack of familiarity with CORBA will
become a problem for the project.”

The severity estimate is a judgment of
how much difficulty the project would
incur if the risk were to turn into a prob-
lem. Estimating the severity for each
candidate risk is similar. You can use the
simple low-medium-high scale again or
you can estimate the dollar-cost for what
it would take to deal with the problem.
For example, “If our lack of familiarity
with CORBA did turn into a problem, we
believe it would cost us about $50,000 to
recover from it.” The recovery costs
could include bringing in an outside
consultant, delayed deliveries because of
missed milestones, and so on.

59NOVEMBER 1999

Java COM

9Net Ave
www.9netave.net

Java COM

60 NOVEMBER 1999

Risk Prioritization
Practically speaking, the project team

can probably handle active control of
between a half-dozen and a dozen risks.
It’s not uncommon for the previous risk
identification step to identify two or
three dozen candidates. The risk priori-
tization step is used to figure out which
of the candidate risks will be actively
controlled and which will be deliberate-
ly ignored. The “risk exposure” for each
candidate risk is calculated and the
risks are then rank-ordered by expo-
sure. Risks that carry a high exposure
will be actively controlled, while those
with low exposure can usually be safely
ignored.

When probability has been estimat-
ed in terms of percentage, and the
severity has been estimated in terms of
dollar cost, the exposure for each risk
is simply the probability times the dol-
lar cost. For example, the lack-of-
CORBA-familiarity risk, with a proba-
bility of 40% and a severity of $50,000,
leads to a risk exposure of $20,000. If
the immaturity/instability of the ORB
product had a probability of 10% and a
severity of $100,000, the risk exposure
on this risk is $10,000. We should be
more concerned about controlling the
CORBA familiarity risk than the imma-
turity/instability risk.

When the probability and/or severity
are estimated in terms of a simple low-
medium-high scale, the prioritization is
less straightforward. Clearly, a high
probability/high severity risk carries a
higher exposure than a low probabili-
ty/low severity risk, but judgment will
be required to prioritize a low probabili-
ty/high severity risk relative to a high
probability/low severity risk. The impor-
tant thing is not to have precisely calcu-
lated risk exposures. Rather, it’s to
understand which risks are more impor-
tant and warrant more effort and atten-
tion.

Once the candidate risks have been
rank-ordered by exposure, the list is
examined from the top down (from the
highest exposure to the lowest) to decide
which risks should be actively con-
trolled.

Asset Assessments
I’ve also found it useful to consider

software project “assets,” which are
like inverse risks. They are characteris-
tic of the project that the team should
be careful to take advantage of. For
example, a very tight set of customer
requirements that must be precisely
satisfied could be considered a project
risk. On the other hand, maybe the
customers are much more flexible and

willing to give the project team signifi-
cant control over the detailed require-
ments. The flexibility offered to the
team is an asset that the project team
should be aware of and take advantage
of.

Asset assessment can be performed
alongside risk assessment, since it fol-
lows the same steps. The generic risks
can also be considered candidate assets.
For instance, a large, geographically dis-
persed project team would be a risk
whereas a small, colocated project team
would be an asset. The probability that
the asset will turn out to be useful can be
estimated as the risk probabilities are
being estimated. Similarly, the asset
benefit, that is, the value to the project
team if the asset were realized, can be
estimated alongside the risk severities.
Finally, the assets are rank-ordered in
terms of potential benefit exposure
(probability times consequence or some
similar formula) and a decision is made
about which assets will be managed
actively.

The Project Plan
The third major step is to develop the

project plan. The most important thing
to remember while doing the planning
is that every activity in the plan, and the
level of formality that those activities
will be performed at, should be selected
carefully to:
• Help the project satisfy its charter.
• Help the project control a high-expo-

sure risk.
• Help the project maximize the benefit

of some asset.

In short, every part of the charter, as
well as every high-priority risk and
asset, must be addressed adequately
by one or more planned actions or
activities, and every planned action or
activity must be there to help satisfy
the charter, control risks or maximize
assets. Some project teams have taken
the extra step of developing a “trace-
ability matrix” to verify the consistency
between the project plan and the char-
ter and risk/asset assessment.

The sample traceability matrix in
Table 1 shows, for example, that Charter
component 2 (whether it’s a goal,
resource, constraint or asset) is being
addressed jointly by Plan components 2
and 6. Similarly, Plan component 3 is in
place to address Assets 1 and 2. In this
format any empty row means that a
charter component, risk or asset isn’t
being addressed by the current plan. An
empty column means that a plan com-
ponent isn’t addressing any charter
component, risk or asset.

To the extent that a charter compo-
nent, risk or asset isn’t being addressed
by planned activities, the project has a
much lower probability of successful
completion. Your chances of surviving
this project have been reduced. Similar-
ly, to the extent that the planned activi-
ties don’t address the project’s charter,
risks or assets, the project team will be
wasting its time. Time spent on these
activities won’t carry any benefit for the
project team and may prevent it from
doing things that would benefit the pro-
ject. Given the tight constraints that the
typical software project operates under,
we should be very sensitive to wasted
effort.

To illustrate the variation in process
formality based on risk, consider that a
large, geographically dispersed project
team would probably benefit from a for-
mal approach to configuration and
change management, while a small,
colocated project team may find an
informal approach entirely sufficient.

I start the detailed project planning
with the project charter and the list of
high-priority risks and assets, together
with a project plan template that identi-
fies the basic planning components.
Table 2 is a high-level view of this tem-
plate.

Planning to Control Risk
There are four basic strategies for

controlling any given risk:
• Avoidance: Act to make the probabili-

ty go to zero (i.e., make it impossible)
• Mitigation: Act to reduce the proba-

bility and/or the severity

Pl1 Pl2 Pl3 Pl4 Pl5 Pl6 Pl7 …
Ch1 X X
Ch2 X X
… X
Risk1 X
Risk2 X
… X
Asset1 X X
Asset2 X X
… X

TABLE 1 Sample traceability matrix

C O R B A C O R N E R

61NOVEMBER 1999

Java COM

Force 5
www.force5.com

• Transference: Push the risk onto
someone else

• Acceptance: Develop a contingency
plan for handling the problem should
it occur

(More information on risk manage-
ment can be found in References 3 and 4.)

As there are probably some fairly
obvious CORBA-related risks on your
first project, we can think about specific
actions to control them.
• Lack of development team familiarity

with CORBA and/or a specific product:
1. General CORBA training (see the

OMG Web site at www.omg.org) –
free training is provided for OMG
member organizations five times
per year at OMG Technical Commit-
tee meetings.

2. OMG’s “Ask the Experts” forum
3. Specific ORB and Services training

from the vendor
4. Expert consulting help from the

vendor or a knowledgeable profes-
sional consultant

• Immaturity/instability of ORB and/or
Services products
1. Early prototypes to determine

ORB/Services stability
2. Contact other users of the same ven-

dor product

• Not meeting performance require-
ments (e.g., insufficient network band-
width)
1. Early prototypes of performance-

critical code sections
2. Expert consulting with the ORB ven-

dor regarding performance tuning

Tracking and Oversight
Planning the project is one thing.

Guiding the project to successful com-
pletion requires more. It takes careful
monitoring of the project’s ongoing
performance, comparison of the pro-
ject’s actual performance with the
expected status as derived from the
plan, and the careful application of cor-
rective actions when significant differ-
ences between the actual performance
and the plan are discovered. The cor-
rective action could include an entire
replan of the project if one or more of
the basic planning assumptions turns
out to be incorrect.

Ongoing Risk Management
The project manager needs to under-

stand that risks (and assets) have a life-
time. The earliest lifetime phase is where
the risk is known but it’s too early for it
to become a problem. As an example,
consider the risk of a lack of ORB knowl-
edge. Once the use of CORBA has been
decided, we can identify that risk. But
until the ORB product is selected, it’s
impossible for the risk to materialize.
The middle phase is where the risk has a
nonzero probability of materializing.
The final phase is where the risk has
actually materialized as a problem or its
probability has gone back to zero. At
some point either the project team’s lack

of ORB knowledge has materialized as a
problem or the team has obtained ade-
quate knowledge so it’s no longer a
problem.

The point is that we can’t view the
project’s risks as being static. It’s impor-
tant for the project manager, and the
team as a whole, to keep in mind that
some active risks will disappear at cer-
tain points in the project and other
new, previously unrecognized risks
may come into play. Since major
changes in the risk landscape are most
often associated with major project
phase changes (e.g., moving from
requirements to design or from design
to code), it’s recommended that the
project team reassess its risks (and
assets) at every major project mile-
stone.

As existing risks (and assets) are
retired and new ones are discovered, it’s
vitally important that the project plan be
modified to account for those changes to
maintain the traceability of the project’s
charter, risks and assets and the current
project plan. It’s also possible that the
project’s charter may undergo change
over the course of the project. Again, it’s
vitally important to the survival of the
project that any significant changes to
the charter be matched by correspond-
ing changes to the project plan.

A Summary of the Approach
This approach really suggests the

adoption of a “project development life-
cycle” that’s similar to the more familiar
software development lifecycle as
shown in Table 3.

The project charter establishes the
ground rules for the project. The risk and
asset assessment is used to discover the
important characteristics of the product
and the organization(s) working on it.
This is the basis for developing the pro-
ject plan. If the same charter were given
to different organizations, different pro-
ject plans would likely result owing to
important risk and asset differences
between the organizations. Execution of
the plan results in producing a system
that satisfies the given charter in light of
the known risks and assets. And just like
ongoing software product maintenance,
the project plans will likely need mainte-
nance due to recognized changes in the
project’s circumstances.

Results of Using This Approach on
My First CORBA Project

In January 1997 I was assigned to my
first CORBA project as its manager. The
project involved developing a set of
CORBA performance benchmark appli-
cations to investigate the use of ORBs in
high-performance, safety-critical avi-

Technical Activities
Documented requirements/requirements development
Design/UML
Coding standards
Etc.

Quality Activities
Peer reviews
Testing
Requirements trace

Management Activities
Schedule tracking and management
Cost tracking and management
Functionality tracking and management
Quality tracking and management (e.g., defect tracking)
People management (staffing, motivation/morale, environment, teamwork)
Configuration Management
Change Management
Status reporting

Deployment Activities
Product Packaging
System Installation/system conversion
User Training
User Support

Software lifecycle (waterfall, iterative, spiral,…)
Resource allocations (schedule, pert chart, etc.)

TABLE 2 Project plan template

Java COM

62 NOVEMBER 1999

C O R B A C O R N E R

63NOVEMBER 1999

Java COM

The Theory Center
www.theorycenter.com

Java COM

64 NOVEMBER 1999

onics applications. While I had signifi-
cant personal experience with CORBA,
having been involved with the OMG
since 1993, the other project members
had none to speak of. As a team, we
documented the project’s charter,
assessed our risks and assets, and built
a plan consistent with the particulars
of this project. Partway through the
project it was decided (outside the pro-
ject team) that one of the benchmark
applications should be subcontracted
out to a neighborhood software vendor
who also had no significant CORBA
experience. Again, we chartered the
vendor project and walked the vendor
through the risk and asset assessment.
We then helped them develop an
appropriate project plan (which, by the
way, was significantly different than
our plan for that part of the project). In
the end, the benchmark applications

were delivered on time and, in fact,
under budget.

Beyond CORBA Project Survival
What’s the difference between the way

I managed my first CORBA project and
how I’d manage any software project?
Very little. The only substantial difference
is in the candidate risks and assets to be
considered. In the CORBA project case we
considered risks about the use of a tech-
nology we might not have used before.
Similar risks would be encountered on
your first Java project, your first DCOM
project or your first anything project.

This approach to project survival was
initially developed while I was obtaining
my MS in software engineering at Seat-
tle University. It’s been used successful-
ly, starting with my senior capstone pro-
ject (a six-person/year project demon-
strating agent-oriented applications) up

to and including the redevelopment of
the corporate employee records system
at a major manufacturing corporation.

Conclusions
At this level of actions and activities in

a project plan, the message should come
across that there’s no one-size-fits-all
software project methodology. Nor could
there ever be, despite what some method-
ology vendors would like us to believe.
Only when the specific actions and activ-
ities in the project plans are tuned to the
peculiarities of the project at hand (i.e.,
are directly related to the charter, the risks
and the assets) will the project be capable
of performing in an efficient and effective
manner. Only then will you stand the best
chance of surviving your first CORBA pro-
ject – or, in fact, any project.

References
1. McConnell, S. (1996). Rapid Develop-

ment. Microsoft Press.
2. —(1998). Software Project Survival

Guide. Microsoft Press.
3. Boehm, B.W. (1989). Tutorial: Soft-

ware Risk Management. IEEE Com-
puter Society Press.

4. Fairly, R. (1994). “Risk Management
for Software Projects,” IEEE Software,
May.

stevet@construx.com

SOFTWARE LIFECYCLE PROJECT LIFECYCLE
Requirements Project charter
Analysis Risk and asset assessment
Design and coding Project planning
Operation of the software, Execution of the plans, resulting in software
producing the desired results product(s) that satisfy the project Charter in

light of the risks and assets.
Maintenance due to changing customer Replanning due to changing project
needs circumstances

TABLE 3 Software development lifecycle

AUTHOR BIO
Steve Tockey is vice

president of consulting at
Construx Software and

has been employed in the
software industry since

1977. Steve has an MS in
software engineering from

Seattle University and a
BA in computer science

from the University of
California, Berkeley.

C O R B A C O R N E R

Certified
Online

www.certifyonline.com

Career
Central

www.careercentral.com/java

65NOVEMBER 1999

Java COM

Protoview
www.protoview.com

This new breed of JVM provides what’s needed for large-scale enterprise applications

WRITTEN BY
JEREMY LIZT

Oracle JServer Scalability and Performance

A
s Java has evolved from the language of applets and JavaBeans to that of servlets, Enterprise Java-
Beans and database stored procedures, a need has developed for a scalable Java platform. No longer
are Java applications run only for a single user. Companies are now building enterprise-scale pro-
duction systems using server-side Java technology, and these systems need to scale to serve tens –
often tens of thousands – of concurrent users. Although many efforts have been made to enhance
the JDK, Sun Microsystems’ reference JVM implementation, Oracle pursued a different strategy as
it set out in 1996 to develop an enterprise-scale, server-side Java Virtual Machine from the ground
up.This effort manifested itself in the recent release of Oracle JServer, a 100% Java-compatible serv-
er environment supportive of Enterprise JavaBeans, CORBA servers and database stored proce-

J S E R V E R

Java COM

66 NOVEMBER 1999

Challenges of Java Scalability
A platform or application is generally

said to be scalable if it provides consis-
tent performance whether serving a
handful or an abundance of concurrent
users. Ideally, the user of a system will
experience delays that are independent
of the number of users on the system. If
a bank teller must wait 100 msec to per-
form a transaction during off-peak peri-
ods, he or she should wait just about 100
msec during peak periods. Naturally, sys-
tems don’t scale ad infinitum, but begin
to show degraded performance above
some critical load. An application may
be said to scale to n concurrent users
when response time begins to bloat with
the n + 1th user (see Figure 1). Once
usage exceeds this threshold, it’s prefer-
able for system performance to degrade
gracefully and linearly, rather than in an
erratic, unpredictable manner.

There are a number of central chal-
lenges in building a scalable Java plat-
form. First, the server must provide an
effective mechanism to handle multiple
concurrent clients. The architecture of
most JVMs forces application developers
to implement their own scalability by
writing multithreaded Java code. A JVM
that professes to be a scalable Java server
may claim to provide good support for
Java language threads. Two fundamental
problems impair this approach: the
application developer is required to
build in his or her own scalability (a diffi-
cult, error-prone task), and garbage col-
lection on heavily threaded applications
can be extremely inefficient. In a simple

model in which each individual user
maps to a Java language-level thread, a
single garbage collector deals with all
garbage from all users.

The technique by which a JVM per-
forms storage management, as well as
the JVM architecture, determines the
efficiency of garbage collection. The sec-
ond challenge facing the Java server
provider is optimizing storage manage-
ment. One of Java’s primary benefits to
developers is that they need not
expressly allocate and free memory.
Automated memory management is the
responsibility of the VM, and a poor
garbage collection algorithm will dimin-
ish the scalability of a Java server.

The third challenge in achieving plat-
form scalability is minimizing the mem-
ory footprint consumed by each user of
the system. The server will naturally be
limited by the physical resources of the
configuration, so the JVM must make
the most efficient use of its available
memory to maximize the number of
clients it can serve. Many vendor imple-
mentations attempt to achieve scalabili-
ty by spawning multiple instances of a

JDK or similar JVM. This approach
incurs substantial redundancy, however,
contributing to a burdensome client
footprint and restricting scalability.

Finally, a Java server should execute
code swiftly as a means to bolster scala-
bility. An inefficient bytecode execution
will uneconomically consume precious
CPU, resulting in sluggish performance
and degraded scalability potential.
Common approaches to accelerating
execution typically involve some sort of
just-in-time (JIT) or dynamic native
compilation of Java bytecodes.

Oracle JServer Architecture
The challenges of concurrent garbage

collection, memory management and
session footprint are directly addressed
by the Oracle JServer architecture.

Oracle JServer is tightly integrated
with the Oracle8i database, and both
share the notion of a client session.
When a client initiates a session either
through the SQL database or directly
with JServer, it receives a single session
within Oracle8i that comprises both a
SQL database session and a JServer ses-

FIGURE 1 Both applications scale to n concurrent users. Response time of one sys-
tem degrades erratically; the other degrades in a graceful, linear manner.

Editor's Note: This article contains benchmark data developed by Oracle. Because we feel this is timely information, we’ve decid-
ed to run the article ahead of confirmation by the JDJ laboratories. We’ll confirm these figures in first quarter 2000 and will pub-
lish an update in our Enterprise Application Server issue, scheduled for April 2000.

67NOVEMBER 1999

Java COM

Java Bus. Conf.
www.javabusinessconference.com

sion. Each JServer session maintains its
own Java state, which is not shared
between sessions. Every client to JServer
thereby perceives a dedicated JVM.
Although many JVM implementation
resources are shared between sessions
(read-only bytecode information, for
example), the experience of a JServer
client is that of a devoted JVM. The client
session, appearing to the client as a ded-
icated VM, can thus be regarded as a vir-
tual virtual machine, or VVM (a model
similar to that of a UNIX operation sys-
tem) (see Figure 2).

Oracle JServer was designed as a serv-
er-side Java platform, and it is specifical-
ly architected to address challenges of
Java scalability. A fundamental advan-
tage of the architecture is that it relieves
the Java application developer of the
need to write multithreaded server
code. When developing for the JServer
platform, a developer is encouraged to
write the application for a single user.
Scalability is achieved once the applica-
tion is loaded into JServer. The virtual
machine uses the multithreaded server
facilities of the RDBMS to concurrently
schedule Java execution, enabling thou-
sands of clients to simultaneously
access the application through indepen-
dent JServer sessions. In addition to
freeing the application developer to
focus on his or her application code, the
JServer architecture provides the related
benefit of escaping the garbage collec-
tion bottlenecks that can hamper per-
formance in multithreaded Java appli-
cations. JServer sessions, or VVMs,
maintain independent memory stores
and can be garbage-collected indepen-
dently.

JServer thereby enjoys a performance
advantage because the burden and
complexity of memory management

doesn’t increase as the number of users
increases. The memory manager always
deals with the allocation and collection
of objects within a single session. The
simplicity of this scenario welcomes the
application of sophisticated allocation
and collection schemes attuned to the
types and lifetimes of objects. For exam-
ple, new objects are allocated in fast and
cheap call memory, designed for quick
allocation and access. Objects held in
Java static variables are migrated to
more precious and expensive session
memory. Different garbage collection
algorithms are applied in the various
memory areas, resulting in high efficien-
cy and low overhead.

Oracle JServer shares common read-
only code and other appropriate data

between its concurrent sessions. Only
state variables unique to a session need
to be stored privately for each VVM.
Through this model JServer minimizes
the memory footprint required to service
its clients. Since its architecture scales
comfortably to the capacity of its host
machine, it never needs to spawn new
JVM instances to serve additional users.
Its shared memory model can therefore
be leveraged over its full user population.
Memory footprints for simple programs
like hello, world require as little as 35K
per concurrent user on JServer. This
measurement compares favorably to
analogous footprints exceeding 1M on
servers that are forced to spawn addi-
tional JVMs.

Oracle JServer addresses garbage col-
lection, memory management and foot-
print challenges by means of its archi-
tecture. It confronts the execution per-
formance challenge with its JServer
Accelerator native compilation technol-
ogy. In contrast to the JIT approach
employed by many JVM implementa-
tions, the JServer Accelerator uses a WAT
(way ahead of time) technique. As server
code tends to be long-lived on its host
machine, it’s generally worthwhile to
compile it into well-optimized native
code. A WAT will invest more time in
compilation than a JIT to produce more
comprehensive optimizations.

ScaleServer Benchmark
The ScaleServer benchmark was

designed to provide a fundamental
measurement of Java server scalability.
It specifically targets a server’s ability to
run multiple concurrent users, perform
basic computations, and allocate and
free Java memory structures. These tasks
encompass the four central challenges
of Java scalability discussed previously.

Description
The benchmark employs a CORBA

infrastructure in which all clients to the
server are CORBA clients that connect to
a CORBA server running either as a
standalone HotSpot Java VM or in the
Oracle JServer. Each client creates its
own CORBA object on the server side. In
the case of Oracle JServer, each client’s
server object operates in an indepen-
dent session. Once connected to its
server object, each client executes a
loop that runs a “work” method on the
CORBA server object and sleeps for a
period of time. (With the HotSpot Java
VM, a set of worker threads is formed to
execute the workload on the server
side.) The method tests processing
power by computing Fibonacci num-
bers. To test memory management and
garbage collection efficiencies, the work

Java COM

68 NOVEMBER 1999

FIGURE 2 Each Oracle8i client perceives a dedicated JVM. This virtual VM
(or VVM) actually shares much of its implementation and read-only data with
other JServer sessions.

FIGURE 3 JServer’s generational
garbage collector segregates Java objects
into separate memory areas to improve
memory management efficiencies. A newly
allocated object is placed into New
Space, which is “swept” frequently. An
object that survives n sweeps is migrat-
ed to Old Space, swept less often.
Objects reachable through static vari-
ables at the end of a method call are
placed into Session Memory, whose con-
tents are persisted between method calls.

J D J L A B S

69NOVEMBER 1999

Java COM

JDJ Consulting
Services

www.javadevelopersjournal.com

Java COM

70 OCTOBER 1999

method instantiates, holds and drops
Java objects. The workload represents a
typical conversational load with multi-
ple concurrent, stateful sessions on the
server. Clients are added until the load
becomes unmanageable to the server.
The benchmark clients measure the
round-trip time between the issuance of
a request and the receipt of a response
from the server. (Note that no SQL data-
base access is done in the benchmark.)
Although swift SQL access is an inherent
benefit of JServer’s integration with

the Oracle8i database, the ScaleServer
benchmark is intended to produce a
pure measure of a Java server’s execu-
tion scalability.

Parameters
The Java servers were run on a Sun

Workgroup Enterprise 450 machine run-
ning four 250MHz Ultrasparc II proces-
sors with a 1.6GB/sec UPA interconnect
and 1GB/sec PCI I/O subsystem. The E-
450 machine was configured with Solaris
2.5.1, 4GB main memory and 100GB of

fast hot-swap Ultra SCSI internal stor-
age. Client threads were run on separate
machines. Every request by a client
caused the server object to compute the
twenty-third Fibonacci number, allocate
and drop 200 binary object trees of depth
5, and recycle 10 object trees from an
additional persistent store of 200 such
trees. After instantiating the server
object, a client repeatedly issued calls to
the server object, sleeping for 3 minutes
after receiving each response. The

SlangSoft
www.slangsoft.com

J D J L A B S

FIGURE 4 The ScaleServer benchmark measures the average round-trip time for a call to the “work” method as a function
of the number of concurrent clients. The graph shows the results of the test run on a Sun Enterprise 450 class 4 CPU
machine. Oracle JServer produced consistent response times for over a thousand simultaneous users while the HotSpot engine
gave bloated and erratic results. Even after surpassing the capacity of its host machine, JServer gave graceful degradation of
performance.

—continued on page 76

71NOVEMBER 1999

Java COM

Sprint
gofish@sprint.net

A hybrid application, but the technique works with any COM object

WRITTEN BY
ALLAN K. GREEN T

here are many situations in which it’s useful or necessary to invoke native functions from Java. One
of the more challenging is to invoke Microsoft COM functionality using Java native methods. Devel-
opers using Microsoft’s J++ platform can sidestep the problem by creating a Java interface directly
from the COM (OLB) files, but the resulting Java application may include Microsoft-specific language
extensions. However, a platform-independent solution (at least in the Java sense) is available using
the Java Native Interface. JNI provides a standard interface by which Java classes interface with
native code and vice versa. In this article we’ll develop a hybrid application using a Java GUI to invoke
MS Excel functionality wrapped in a C++ load library (dll). While the code samples are specific to
Excel (and, admittedly, of little practical use), the technique is extensible to any COM object.

J N I T E C H N I Q U E

Java COM

72 NOVEMBER 1999

Using the Java Native Interface
JNI is a specification for native code

interfaces developed by Sun Microsys-
tems and distributed as part of the JDK.
A detailed description of the interface
can be found in Beth Stearns’s article at
http://java.sun.com/docs/books/tutor-
ial/native1.1/index.html, but, in sum-
mary, using the JNI, you can:
• Call applications and functions writ-

ten in C, C++ or Assembler from Java.
In this example we’ll use native code
to create an instance of an Excel appli-
cation, open a workbook and work-
sheet, insert some data and chart it.

• Call Java functions from native code.
Our example will request chart data
values from a Java Option Pane.

While additional JNI features are cov-
ered in the Sun tutorial, they won’t be
used in this example.

Using the JNI requires the following
steps:

1. Create the Java class or classes that
will act as the native code interface.
Our example creates the AXExcel
class, which defines the Java methods
that will be implemented in native
code. The AXExcel class is then com-
piled to the AXExcel.class file.

2. With AXExcel.class as input, run the
javah utility (included in the JDK)
with the –jni option to create a C-style
header file – in this case, AXExcel.h.

3. Create a dynamic library (dll) imple-
menting the functions in AXExcel.h.
The native code in this example will
be implemented in AXExcel.cpp. This
is by far the most time-consuming
step.

4. Build and link the dynamic library as
AXExcel.dll. This library must be acces-
sible to the Java AXExcel class.

5. Create a simple Java GUI interface to
invoke the native methods (see Figure 1).

6. Test and debug the application.

This example was developed using
Symantec Visual Café Professional V3.0
and MS Visual C++ 6.0 running on a
WinNT 4.0 SP5 system. Win95 platform
developers may need to install DCOM to
support the COM features.

Creating the Java Native Class
Listing 1 contains the definition for

the AXExcel class. Java native methods
can be declared in any class, but the
application will be simpler if the native
interface is confined to a single class.
AXExcel.java defines four native meth-
ods:
• OpenExcelWB creates a new Excel

workbook and activates a worksheet.
• SetVisibility allows the Java interface

to hide or show the worksheet.

• ExcelGraph creates a bar graph from
values supplied via getCellValue.

• QuitExcel saves the worksheet and
closes the Excel application.

Note that when the method modifier
native is used, the method has no imple-
mentation. Java expects to find the
implementation in a system load library
(dll) that is loaded prior to any call to a
native method. This can be done during
object construction, but the more gen-
eral practice is to use a static initializer
as shown in Listing 1.

The final method in AXExcel is
getCellValue, which is called by Excel-
Graph to obtain values for the bar graph.
getCellValue raises an option pane to
allow the user to supply values. Entering
a null value signals ExcelGraph to stop
requesting values and create the graph.

Next, having compiled AXExcel.java to
AXExcel.class and corrected any compi-
lation errors, we can generate the AXEx-
cel.h header file using the javah utility.
From the command line, javah –jni
AXExcel creates the header file needed
for the C++ native implementation.

Creating the C++ Native Implementation
(AXExcel.dll)

The starting point for implementation
is the AXExcel.h header file shown in List-
ing 2. C++ programmers will immediate-
ly note the unique JNI types, which are
defined in the jni.h file usually found in
the ..\java\include folder. For a descrip-
tion of the JNI types, extractors and other
operators, refer to the JNI section of the
Java Tutorial. Our task is to implement
each of these in a Win32 dll using the
Excel COM interface. To simplify library
dependencies, we won’t use MFC.

FIGURE 1 Simple Java GUI interface
that invokes the native methods

Calling MS Excel via the Java Native Interface

73NOVEMBER 1999

Java COM

Listings 3, 4 and 5 show the source
code for AXExcel.cpp. In Listing 3 the
necessary includes and imports are
shown along with the DllMain function.
The three import files provide the COM
functionality for Excel and must be
located in directories in the Include
paths. The full syntax of import state-
ments is as follows (see comments for
Office 2000 in Listing 3):

#import <mso97.dll> no_namespace
rename(“/DocumentProperties”, “Docu-
mentPropertiesXL”)
#import <vbeext1.olb> no_namespace
#import excel8.olb> rename(Dialog-
Box”, “DialogBoxXL”) rename(“RGB”,
“RBGXL”) rename(“DocumentProperties”,
“DocumentPropertiesXL”)
no_dual_interfaces

Next, the global IDispatch COM
pointers for the Application, Work-
sheet(s) and Workbook are declared. The
DllMain function is required to ensure
that:
• The COM Library concurrency model

is initialized as Multithreaded on
attachment. The default is Apart-
mentThreaded, which will cause run-
time errors.

• The COM library is detached at termi-
nation.

OpenExcelWB (Listing 4) demon-
strates a number of important concepts.
The first task is to extract the path and
worksheet names from the jstring argu-
ments using the JNI extractor Get-
StringUTFChars. Note that the result is a
standard C-style string buffer that must
be released with the ReleaseStringUTF-
Chars method before the pointer loses
scope. Next, we look for the open Excel
application or, finding none, create a
new Excel task, which sets the applica-
tion dispatch pointer, pXL. This dis-
patcher is used to retrieve the Work-
books collection. If the path and wks
arguments reference an existing work-
book and worksheet, it will be opened in
the next try block. Otherwise the result-
ing error will be caught and a new work-
book and worksheet will be created. The
method completes by activating the cur-
rent worksheet, making Excel visible
and releasing the buffers used for
extraction.

SetVisibility is interesting primarily as
a demonstration of variations of the
Boolean type. JNI uses jboolean, with
values JNI_TRUE and JNI_FALSE. Set-
ting Excel’s visible property requires a
variant type with the VARIANT_TRUE or
VARIANT_FALSE value.

QuitExcel’s main functions are to save
the workbook and exit the Excel Appli-
cation, both of which are accomplished

in the first try block. However, the last
four statements are critical: unless the
dispatch pointers are released and
detached, the application won’t termi-
nate properly.

ExcelGraph method (Listing 5) is the
most complex implementation in that it
not only creates an Excel chart, it
retrieves the data by calling the Java
method, getCellValues. After clearing the
cells and initializing the range to the cell
A1, we locate the Java class with the
GetObjectClass method, which returns a
jclass object, caller. GetMethodID uses
the class to locate getCellValues on the
Java side, returning a jmethodID object
method. Locating the method requires
the class, a C-style string containing the
method name, and the exact Java method
signature. The JNI is unforgiving on this
point, so it’s a good idea to use javap with
the –s option to get the precise syntax.
For example, javap –s AXExcel displays
(Ljava/lang/String;)Ljava/lang/String;
for getCellValues, the necessary third
parameter for getMethodID. If a valid
method ID is returned, the do-while loop
iterates until an empty (0-length) string is
returned. First, it retrieves the cell ID,
using the Range method GetAddressLo-
cal, and creates a jstring representation
of it for use as the getCellValue argument.
We then call the Java getCellValue
method, which should return a numeric

Geek
Cruises
www.geekcruises.com

Visualize
www.visualizeinc.om

Java COM

74 NOVEMBER 1999

import java.lang.*;
public class AXExcel extends java.lang.Object {
static {

try {
System.loadLibrary("AXExcel");

}
catch (UnsatisfiedLinkError e) {

System.out.println(e.getMessage());
}

}
public String getCellValue(String cellName) {

String inputValue =
JOptionPane.showInputDialog("Cell" + cellName+ ":");
return inputValue;

}
public native boolean ExcelGraph();
public native boolean OpenExcelWB(String path,String wks);
public native void SetVisibility(boolean flag);
public native void QuitExcel();

}

#include <jni.h>
#ifdef --cplusplus
extern"C"{
JNIEXPORT jboolean JNICALL Java_AXExcel_OpenExcelWB

(JNIEnv *, jobject, jstring, jstring);

JNIEXPORT void JNICALL Java_AXExcel_SetVisibility
(JNIEnv *, jobject, jboolean);

JNIEXPORT void JNICALL Java_AXExcel_QuitExcel
(JNIEnv *, jobject);

JNIEXPORT jboolean JNICALL Java_AXExcel_ExcelGraph
(JNIEnv *, jobject);

#ifdef --cplusplus
}

#include "AXExcel.h"
#include <comdef.h>
#include <stdio.h>
#include <objbase.h>
#include <windows.h>
#import <mso97.dll> //mso9.dll for MS Office 2000
#import <vbeext1.olb> //vbe6ezt.olb for VB6
#import <excel8.olb> //excel9.olb for MS Office 2000
#pragma warning (disable:4192)
using namespace Excel;

_WorksheetPtr pSheet;
SheetsPtr pSheets;
_WorkbookPtr pBook;
_ApplicationPtr pXL;
BOOL WINAPI DllMain(HINSTANCE hinstDLL,

DWORD fdwReason,
LPVOID lpReserved)

{ switch(fdwReason)
{ case DLL_PROCESS_ATTACH:

CoInitializeEx(NULL,COINIT_MULTITHREADED);
break;

case DLL_PROCESS_DETACH:
CoUninitialize();
break;

} return TRUE;
}

JNIEXPORT jboolean JNICALL Java_AXExcel_OpenExcelWB
(JNIEnv *jThis, jobject jObj, jstring path, jstring wks)

{
const char* jbuf = jThis->GetStringUTFChars(path,0);
const char* wkname = jThis->GetStringUTFChars(wks,0);
jboolean rc = JNI_FALSE;
try {
if (pXL.GetActiveObject("Excel.Application.8")) {
pXL.CreateInstance("Excel.Application.8");

}
WorkbooksPtr pBooks = pXL->Workbooks;
try {
pBook = pBooks->Open(jbuf);
pSheets = pBook->GetSheets();
pSheet = pSheets->GetItem(wkname);
rc = JNI_TRUE;

}
catch (_com_error &) {
pBook = pBooks->Add();
pSheet = pBook->Sheets->Add();
pSheet->Name = wkname;
rc = JNI_TRUE;

}
pSheet->Activate();

}
catch (_com_error &e) {
printf("Error: %d, Msg: %s",e.Error(),e.ErrorMessage());

}
Java_AXExcel_SetVisibility (jThis, jObj, true);
jThis->ReleaseStringUTFChars(path,jbuf);
jThis->ReleaseStringUTFChars(wks,wkname);
return rc;
}
JNIEXPORT void JNICALL Java_AXExcel_SetVisibility

Listing 4: OpenExcelWB

Listing 3: Necessary includes, imports and DllMain function

Listing 2: AXExcel.h

Listing 1: AXExcel.java

AUTHOR BIO
Allan K. Green owns and

operates QualiNet
Company in Hillsborough,
North Carolina, providing

training and consulting
services in OO A&D

design tools and
languages, principally

C++ and Java, custom
courseware and

instruction programs, and
systems design and

integration services. His
previous experience
includes information

systems management
and development for IBM.

value as a jstring. After conversion to a C-
string this is inserted into the current cell,
the active cell range is moved one cell to
the right and the buffer is released. When
the do-while loop terminates, the entire
UsedRange is used to create a simple bar
chart. The method terminates by releas-
ing and detaching the range and chart
dispatch pointers.

Compiling, Building and Debugging the dll
The example code was compiled as

an MS Visual C++ 6.0 Win32 Dll project.
In addition to the default preprocessor
options, it’s necessary to add _OLE32_
and _WIN32_DCOM to activate the
automation options. During code debug
it’s helpful if the C++ project folder and
dll target directory are the same as the
Java class directory.

Debugging a hybrid application can
be tricky if neither component is
known to work. One approach is to
design a minimal driver interface like
the one shown in Figure 1. In this
example the ExFrame constructor cre-
ates an instance of AXExcel, and the
button ActionEvent handlers use that
instance to call the native methods.
The Java side can be debugged by
building a C++ dll version with “stub”
methods, i.e., methods that do nothing
except provide valid return values.
With a visual debugger like Symantec’s
Visual Café, the calls to the native
methods can be confirmed before you
tackle the intricacies of the COM code.
On the C++ side, since AXExcel.dll is
loaded by the AXExcel class, it must be
debugged by executing jave.exe with

the appropriate driver class. In this
example the Visual C++ debug exe-
cutable would be:

<Javapath>\Java\bin\java.exe ExFrame

Application
While this example is admittedly

somewhat illogical (e.g., why call back to
Java to perform data entry to a visible
spreadsheet?), it raises some intriguing
potential for reusing user-developed
COM objects in addition to the standard
COM interfaces like those provided by
Microsoft Excel and Word. Theoretically,
any COM object could be wrapped in a
similarly constructed dll and called from
Java via the JNI interface.

akgreen@akgreen.com

Java COM

(JNIEnv * jThis, jobject jObj,jboolean flag){
try{
if (pXL != NULL){

if (flag == JNI_TRUE) pXL->Visible = VARIANT_TRUE;
else pXL->Visible = VARIANT_FALSE;

}
}
catch(_com_error &e) {
printf("Error: %d, Msg: %s",e.Error(),e.ErrorMessage());

}
}

JNIEXPORT void JNICALL Java_AXExcel_QuitExcel
(JNIEnv *, jobject) {

try {
if (pXL != NULL) {
pBook->Saved = VARIANT_TRUE;
pXL->Quit();

}
}
catch(_com_error &e) {
printf("Error: %d, Msg: %s",e.Error(),e.ErrorMessage());

}
if (!pSheet->Release()) pSheet.Detach();
if (!pSheets->Release()) pSheets.Detach();
if (!pBook->Release()) pBook.Detach();
if (!pXL->Release()) pXL.Detach();
}

JNIEXPORT jboolean JNICALL Java_AXExcel_ExcelGraph
(JNIEnv *jThis, jobject jObj){

try{
pSheet->UsedRange->Clear();
RangePtr pRange = pXL->ActiveCell;
int textlen;
jclass caller = jThis->GetObjectClass(jObj);

jmethodID meth = jThis->GetMethodID(caller,

"getCellValue",
"(Ljava/lang/String;)Ljava/lang/String;");

if (meth == 0) { return JNI_FALSE;}
do {
_bstr_t cellId =

pRange-
>GetAddressLocal(false,false,xlA1,false);

jstring range = jThis->NewStringUTF(cellId);
jstring value =

(jstring)jThis->CallObjectMethod(jObj, meth, range);
const char* jbuf =

jThis->GetStringUTFChars(value,0);
textlen = jThis->GetStringUTFLength(value);
pRange->Value = jbuf;
jThis->ReleaseStringUTFChars(value,jbuf);
pRange = pRange->Next;

} while (textlen != 0);
pRange = pSheet->GetUsedRange();
_ChartPtr pChart = pBook->Charts->Add();
pChart->SetSourceData
(pRange,&variant_t((long)xlColumns));

pChart->Visible;
if (!pRange->Release()) pRange.Detach();
if (!pChart->Release()) pChart.Detach();

}
catch(_com_error &e) {
printf("Error: %d, Msg: %s",e.Error(),e.ErrorMessage());

}
return JNI_TRUE;
}Listing 5: ExcelGraph method

Carmen
Gonzalez
Vice President,
JDJ Advertising
Sales

JDJ Java Report Java World JavaPro

PUBLICATIONS REGULARLY READ BY JAVA PROFESSIONALS

In
de

pe
nd

en
t R

ea
de

x
Re

ad
er

 S
ur

ve
y

re
su

lts

18%

39%

3%

84%

Only Java Developer’s Journal Readers are
100% Pure Java

Before you
advertise in a
publication, please
ask how many
real Java readers
you’re actually
reaching!

www.JavaDevelopersJournal.com or call 914-735-0300
©1999 SYS-CON Publications, Inc. All rights reserved.
JDJ and Java Developer’s Journal are registered trademarks of SYS-CON Publications, Inc.
All other names are trademarks of their respective owners.

Your ad in Java Developer’s Journal reaches only 100% Java
professionals who make the decisions to purchase Java related
products and services, not Visual Basic programmers who never

requested the publication you advertise in!

We build our circulation one subscriber at a time.

That’s one of our secrets why your ad works in JDJ.

Java COM

76 NOVEMBER 1999

benchmark continually inserted addi-
tional clients and measured server per-
fomance as a function of the growing
load. The benchmark was run for the
Oracle JServer and the Sun HotSpot per-
formance engine. The Visigenics 3.4 ORB
was used in testing the HotSpot VM. Ora-
cle JServer CORBA support is provided
by an embedded portion of the Visigen-
ics 3.2 ORB that performs IIOP marshal-
ing functions. The Java application pro-
gram was compiled in both VMs: in
JServer, using the JServer Accelerator
compiler; with the JDK, using HotSpot.

Results
To compare the relative scalability of

the two servers, we compare the average
round-trip time for a call to the “work”
method as a function of the number of
clients connected simultaneously to the
server. On the Enterprise E-450 class
machine, Oracle JServer was able to sup-
port over a thousand concurrent clients,
providing flat and highly predictable
response times until the full processing
power of the machine was utilized. As
additional clients were added, JServer
performance degraded gracefully and
predictably. In contrast, Sun’s HotSpot
Java VM provided highly unpredictable
and nonlinear response times at about
65 to 70 clients. HotSpot was unable to
leverage the full power of the machine,
using less than 20% of the CPUs.

To scale the test even further and eval-
uate Oracle JServer’s ability to exploit
even more sophisticated hardware archi-
tectures, the same tests were run with
Oracle JServer on a Sun Enterprise E-
6500 class machine with 12 Ultrasparc
CPUs, 4GB of memory and 100GB of fast
hot-swap Ultra SCSI internal storage.
Results continued as predicted – JServer
scaled to support over 5,000 concurrent
users while providing very consistent
and predictable response times.

Conclusions
The ScaleServer benchmark clearly

demonstrates the superior scalability of
Oracle JServer over that of the Sun
HotSpot Java VM. While HotSpot handles
about 65 to 70 concurrent users before
fundamentally failing (yielding poor and
unpredictable response times), JServer
provides fast and highly predictable
response times as loads on the system
increase to a thousand and even more
than five thousand concurrent users.

A grave limitation of the HotSpot VM’s
performance was that it was able to lever-
age only about 15 to 20% of the E-450’s
CPUs. Thus, since CPU wasn’t a con-

straining factor, HotSpot couldn’t support
additional clients by using additional
CPUs. In contrast, JServer consistently
scaled linearly up to the capacity of the
hardware, exploiting the additional CPUs
that were added as the test was scaled
from a four-way to a 12-processor system.

Naturally, the more processing a sys-
tem does, the more it will benefit from
running efficient code. While the HotSpot
dynamic compiler may be effective for
single-user applications, much of its ben-
efit is unrealized in a multiuser environ-
ment. The Oracle JServer Accelerator
compilation technology on the other
hand produces excellent results in highly
concurrent scenarios. JServer’s compila-
tion technology works very efficiently
with the server’s shared memory archi-
tecture to provide excellent performance
under multiuser configurations.

Oracle JServer Qualifications
Oracle JServer was designed and

implemented to serve large numbers of
concurrent users, and it naturally incurs
overhead costs for its scalable infra-
structure. Its advantages become more
and more apparent as the number of
clients increases. Consider an analogy to
a delivery company that routinely trans-
ports lots of packages, using a truck. If it
needs to transport only one or two pack-
ages, a car would probably be more
appropriate. Although the truck acceler-
ates less quickly than the car, its superi-
or capacity soon becomes critical as
loads increase. The car will have to make
multiple trips once the third, fourth or
fifth package doesn’t fit in its trunk. For
heavier loads the truck is the faster and
more economic solution – especially a
truck with a powerful engine!

Summary and Benefits
The component-oriented, memory-

safe Java language is becoming the
choice of many companies looking to
develop and deploy large-scale enter-
prise applications. As these companies
begin to leverage productive server-side
Java technologies such as servlets and
Enterprise JavaBeans, a new breed of
JVM is necessary to provide sufficient
scalability. Oracle JServer is currently the
only Java platform in the industry that
meets all the requirements of an enter-
prise-class Java server. Specifically, it:
• Supports thousands of concurrent,

stateful, conversational clients
• Leverages state-of-the-art memory

management and garbage collection
algorithms

• Minimizes memory footprint re-
quired per session to between 35 and
50K as compared to 1 to 3MB for typi-
cal Java VMs such as the JDK

• Exploits advanced hardware architec-
tures, such as SMP and MPP hardware
clusters, scaling linearly as new
processors are added to the cluster

• Provides superior performance via
JServer Accelerator technology

Oracle JServer’s scalability was con-
firmed by a ScaleServer benchmark in
which JServer comfortably outper-
formed its competition by giving consis-
tent performance on multiple platforms
and by providing hundreds of times bet-
ter scalability than rival VMs.

In addition, its scalable architecture
offers three fundamental benefits con-
cerning the development, deployment
and management of Java applications:
1. Ease of programming: The JServer

architecture relieves the Java applica-
tion developer of the responsibility of
writing multithreaded Java code to
achieve scalability. Using Java threads
is error-prone, poses potential securi-
ty issues in a server environment, and
incurs fundamental scaling limita-
tions. With JServer, application devel-
opers don’t need to write multithread-
ed Java code. Since multithreading
facilities and scheduling are provided
by the JServer platform, the applica-
tion developer can write the applica-
tion as if it were to run for a single
user. JServer will scale the application
to automatically serve many multi-
ples of concurrent users.

2. Ease of manageability: Oracle JServer
provides the industry’s most manage-
able Java server platform. Some non-
JServer implementations spawn new
VM instances to support large volumes
of users, an approach that wastes mem-
ory by introducing redundancies and
simultaneously creates a need to man-
age multiple JVM instances. In contrast,
a single JServer instance scales to the
capacity of its host hardware, making
efficient use of memory and requiring
administration of only a single server
instance.

3. Smooth upgrade path: Since JServer is
able to exploit the capacity of simple or
sophisticated hardware systems, it
provides an efficient upgrade path as
user loads increase. It works efficiently
with both 32- and 64-bit operating sys-
tems across all major hardware plat-
forms. Oracle JServer was designed as
an enterprise-caliber platform to run
server-side Java applications. Its archi-
tecture and design facilitates applica-
tion development, maintenance and
upgrade, making it the industry’s most
scalable and most highly productive
Java platform.

jlizt@us.oracle.com

AUTHOR BIO
Jeremy Lizt is a senior

product manager in the
Java Platform Group at

Oracle Corporation.

JSERVER —continued from page 70

J S E R V E R

77NOVEMBER 1999

Java COM

ADVERTISER URL PH PG

9NETAVENUE, INC. WWW.9NETAVE.NET 888.9NETAVE 63

AMERICAN CYBERNETICS WWW.SOFTEXPORT.COM 800.899.0100 55

AVANTSOFT, INC. WWW.AVANTSOFT.COM 408.530.5705 83

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 23

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 60

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 85-93

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 37

COMPUWARE NUMEGA WWW.COMPUWARE.CON/NUBEGA 800.4.NUMEGA 6

CYSCAPE WWW.CYSCAPE.COM/FREE4J 800.932.6869 78

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 83

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/ 65 532.4300 51

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 33

FORCE 5 SOFTWARE, INC. WWW.FORCE5.COM 408.735.0665 53

GEEK CRUISES WWW.GEEKCRUISES.COM 67

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 75

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 57

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 26

JAVA BUYER’S GUIDE WWW.JAVABUYERSGUIDE.COM 914.735.0300 77

JDJ CONSULTING SERVICES WWW.JAVADEVELOPERSJOURNAL.COM 800.713.5111 84

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 42-43

KL GROUP INC. WWW.KLGROUP.COM/PAGELAYOUT 888.328.9599 67

KL GROUP INC. WWW.KLGROUP.COM/SWINGSUITE 888.328.9596 21

KL GROUP INC. WWW.KLGROUP.COM/COLLECT 888.3289597 96

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 45

NEW ATLANTA WWW.NEWATLANTA.COM/ 678.366.3211 29

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 48-49

OBJECT INTERNATIONAL SOFTWARE WWW.OI.COM 919.772.9350 39

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM 415.925.3460 35

PALM COMPUTING, INC. WWW.PALM.COM 69

POINTBASE WWW.POINTBASE.COM/DEVLIC/JDJ 877.238.8798 27

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 73

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 30

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 47

SD 99 EAST WWW.SDEXPO.COM 800.441.8826 82

SEGUE SOFTWARE WWW.SEGUE.COM 800.287.1329 17

SIGS CONFERENCE FOR JAVA DEVELOPMENT WWW.JAVADEVCON.COM 212.242.7515 80-81

SILVERSTREAM SOFTWARE, INC. WWW.SILVERSTREAM.COM 888.823.9700 95

SL CORPORATION WWW.SL.COM 415.927.1724 59

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 16

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 56

SOFTWIRED INC. WWW.JAVAMESSAGING.COM (41) 1.445.2370 7

SUN MICROSYSTEMS INC. WWW.SUN.COM/SERVICE/SUNED/JAVA2 800.422.8020 4

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 25

THE THEORY CENTER WWW.THEORYCENTER.COM 888.843.6791 71

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.922.9665 31

UNIFY CORPORATION WWW.EWAVECOMMERCE.COM 800.GO.UNIFY 13

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 15

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 66

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 41

WORLDWIDE INTERNET PUBLISHING WWW.WIPC.NET 800.785.6170 65

ADVERTISINGINDEX

Develop
Mentor

www.develop.com

Avansoft
Inc.

www.avansoft.com

Application servers occupy a prominent place in multitier computing
as well as in the world of Java-based e-commerce

WRITTEN BY
AJIT SAGAR I

n the world of distributed computing, the industry has latched on to another snazzy, buzzword-com-
pliant, omnipotent entity, the Application Server, also known affectionately as the App Server. Here’s
the sales pitch.You want a robust system? Fault tolerance? Load balancing? Multithreaded transaction
support? Well, don’t reinvent the wheel. If you’re developing an application that solves a particular busi-
ness problem, concentrate on solving that problem and on developing that application. Don’t waste
precious resources trying to focus on solving a problem that’s outside your area of expertise. After all,
if you were in the business of writing compilers, that should have been the highlight of your job descrip-
tion. Similarly, if creating a framework for load balancing, fault tolerance and the like is not your job,
let someone else do it.

E - J A V A

Serving Business Applications

Java COM

78 NOVEMBER 1999

When I look at the stages of my career
thus far, I fondly remember the days
when I designed and deployed my first
commercial product, an electronic pri-
vate branch exchange (EPABX) with the
logic written entirely in – dare I say it? –
Z80 assembly. If I mention assembly
now, people say, “You must be older than
you look.” I don’t program in assembly
anymore, of course; we Java program-
mers frown on such low-level program-
ming, don’t we? Why would you want to
deal with those tedious, low-level, limit-
ed instruction sets when Java compilers
are more than willing to do all that work
for you? If your application doesn’t need
low-level programming, the only reason
you’d indulge in such activity is because
you think you can do a better job of writ-
ing compiler-type code than companies
that specialize in it.

This month in e-Java we’ll take a look
at the role played by application servers
in multitier computing as well as the
impact they’ll have in the world of Java-
based e-commerce. We’ll also examine
the categories of application servers that
exist today and the facilities offered by
these servers. Finally, we’ll look at the
build versus buy issue vis-à-vis applica-
tion servers and discuss how one should
plan to migrate from the former to the
latter.

Evolution of Multitiered Architectures
Application servers are a part of the

evolution of computer topologies from
the mainframe to the n-tier distributed
computer model. The earliest comput-
ing model was the single computer

mainframe. This evolved into the
client/server model. Client/server refers
to a topology that emerged in the 1980s
in which the computer processing tasks
were separated into two types of com-
puters connected to each other over a
network. Typically, this involved the
client, which was the PC, and a server,
which was a mainframe. The client was
responsible for requesting services from
the server and displaying it to the user
after applying the appropriate business
rules and presentation logic. The ser-
vices requested were typically served up
via a database management system.

The next stage in evolution was the
three-tier model. This model split the
responsibilities of the client into two

tiers, one responsible for the presenta-
tion, the other for applying the business
rules used to serve up the data to the
user. The new tier of computing was
given the name middle tier. The decou-
pling of business rules from the presen-
tation logic abstracted the user interface
from changes in the mechanism of
interpreting data served up by the data-
base servers.

The middle tier thus acted as a broker
between the data source and the data
presentation. It was responsible for sev-
eral functions – transaction processing,
business rule validation, data transport
between the presentation tier and the
database server, security across the tiers,
and so forth. The middle tier achieved

HTML

FIGURE 1 Evolution of architectures from mainframe to three-tier

79NOVEMBER 1999

Java COM

these functions through various mechanisms
such as transaction processing monitors, mes-
saging systems, message servers and ORB
(CORBA/DCOM) architectures. As the three-
tier model became popular, it became obvious
that it wasn’t feasible for one organization to
manage all the complexities of the middle tier
and focus simultaneously on the business
problems it was striving to solve. As a result,
the industry saw the emergence of companies
that started providing the middle-tier services
packaged as reusable third-party tools that
could be applied across various industries.
These packaged services were offered via a new
class of computer servers called application
servers.

Figure 1 illustrates the topologies discussed
above.

Application Server in the Middle Tier
Application servers represent typical mid-

dleware. An application server may be defined
as a server program residing in a middle-tier
machine that provides the business logic and
services for an application program. The mid-
dle-tier machine is part of a distributed net-
work topology, and the application program
resides on a client machine that presents the
data to the user. In today’s world application
servers are closely tied to Internet technologies
and the client is typically an Internet client.
Enterprise-level Java application servers are
used to offer Java and browser-based applica-
tions, thus supporting the thin-client para-
digm. In the n-tiered distributed topology,
application servers enable modularity and
componentization of critical applications by
spreading the functionality across various
hardware tiers.

The data served by application servers is
typically served over the Web. Application
servers today are almost always used in con-
junction with a Web server, forming the com-
bination called a Web Application Server. The
Web server is responsible for forwarding
requests from the client to the application
server and returning HTML content back to
the Web client. The Web server uses several
alternative approaches to achieve this,
including CGI, ASP (Active Server Pages), Java
Servlets and JSPs (Java Server Pages). The app
servers may also use distributed service pro-
tocols such as CORBA, RMI and MTS to
achieve object-based communication. If we
look at the distributed n-tier computing
model from the perspective of application
servers, the Web application server defines
the following divisions of a distributed appli-
cation:
• A front-end Web browser-based GUI, which

may be at a PC or network computer or in
end-tier devices such as the Palm Pilot, Win-
dows CE or Webtop machines in the emerg-
ing consumer device market

• A business logic application suite that resides
in the middle tier, usually housed in an
intranet or a middle-tier server farm

• A back-end database tier and transaction
server, which is also responsible for interact-
ing with legacy systems

Web Application Server Services
What services are typically encapsulated by

an application server? I’ve mentioned business
logic several times. Implementing and execut-
ing business logic is certainly the main reason
for the existence of application servers. In
addition, the application servers’ main func-
tion is to make sure that developed and
deployed applications are scalable, reliable and
accessible. Application servers ensure this by
offering some or all of the following:
• Improvement in performance and reliability

of Web-enabled state and session manage-
ment, including support for connection
pooling

• Database transaction management, ensur-
ing database integrity

• Framework for supporting component
development programming models

• Multiplatform and multilanguage support
• Powerful management tools
• Support for security across the multiple tiers

of a distributed application
• High performance and scalability support,

including resource pooling, load balancing
and connection pooling

• Fault tolerance in order to guarantee the
availability of application services, including
support for clustering for failover recovery

• Directory services for user roles and access
permissions

• Workflow tools for defining business process
workflows

The current breed of application servers
offers these functions as a set of services. Some
are offered as core functions; others are add-on
services.

Splitting the Middle Tier in E-Commerce Applications
Application servers may be classified into

different categories based on the services they
offer and the role they play in the application
architecture. In an enterprise-level application
sometimes more than one application server
will coexist and interact to provide the services
needed by the application. One emerging trend
in such distributed applications is splitting the
responsibility into a front-end Web application
server and a middle-tier business logic applica-
tion server. The front-end application server –
an example is ColdFusion from Allaire – is
responsible for managing the C2B (customer-
to-business) interaction. Such servers offer the
functionality typically needed for creating vir-
tual storefronts. In addition to the core services,
other modules supported by these servers are
payment modules, credit authorizations and
user profiles. The middle-tier server is responsi-
ble for interacting with back-end systems and
for executing business logic. Examples are BEA’s
WebLogic application server and Netscape
Application Server. These servers aren’t typical-

Soft
Wired

www.java-

messaging.com

Java COM

80 NOVEMBER 1999

ly concerned with the end customer, but
rather with B2B (business-to-business)
applications. Figure 2 shows an architec-
ture that uses this division of labor
between the two levels of application
servers.

Java and Application Servers
Java middleware has gained a lot of

ground in the past year. Since the

announcement of J2EE, the definition
of what the API standards for Java-
based middleware are going to look
like is much clearer. This has helped
solidify the ground for Java application
servers. Typically, application servers
implement a messaging layer, transac-
tion services, business logic and secu-
rity. The APIs for this are defined by
JMS, JTS, EJBs and Java’s security

model. The good news is that Java
standards will help bring ubiquity to
the world of application servers in the
marketplace. The bad news is that
sometimes it takes more time for the
standards to solidify and the app serv-
er vendors are forced to provide their
own implementations to meet the
needs of the market.

Build vs Buy
Several companies specialize in

building app servers that provide gener-
ic services for distributed business
applications. It really doesn’t make
sense for firms to waste developer
resources by trying to create these ser-
vices in-house, chiefly because it’s not
their area of expertise. However, cost
and time to market are considerations
that force companies to build their own
services. In addition, if the require-
ments for the applications under devel-
opment aren’t satisfied by third-party
application servers, developers have no
choice but to build the functionality in-
house. Still, the modules and services
should be developed with the under-
standing that they’ll be replaced by a
stable third-party server whenever it
becomes available.

AUTHOR BIO
Ajit Sagar, a member of

the technical staff at
i2Technologies in Dallas,

Texas, holds an MS in
computer science and a

BS in electrical
engineering. He focuses

on Web-based
e-commerce applications
and architectures. Ajit is a

Sun-certified Java
programmer with nine
years of programming

experience, including two
and a half in Java.

HTML

Web Client

Web Client

Back Office
Server

MIDDLE-TIER APPLICATION SERVER

Cluster of
"store-front"
application

servers

Cluster of
"back-end"
application

servers

FIGURE 2 Splitting the middle-tier application server

?

ajit@sys-con.com

Get Your Own
Subscription to the

Finest Technical Journals
in the Industry!

1-800-513-7111
www.sys-con.com

E - J A V A

81NOVEMBER 1999

Java COM

JDJ Consulting
p/u

Java COM

82 NOVEMBER 1999

JDJ
www.jdjs

Store
store.com

83NOVEMBER 1999

Java COM

Java COM

84 NOVEMBER 1999

Employment
Ad

85NOVEMBER 1999

Java COM

Employment
Ad

Java COM

86 NOVEMBER 1999

Employment
Ad

87NOVEMBER 1999

Java COM

Employment
Ad

Java COM

88 NOVEMBER 1999

Employment
Ad

89NOVEMBER 1999

Java COM

Employment
Ad

Java COM

90 NOVEMBER 1999

Employment
Ad

91NOVEMBER 1999

Java COM

Employment
Ad

Java COM

92 NOVEMBER 1999

Employment
Ad

93NOVEMBER 1999

Java COM

Employment
Ad

Java COM

94 NOVEMBER 1999

BEA WebLogic
Server 4.5 Released
(San Jose, CA) – BEA Systems,
Inc., has released BEA WebLogic
Server 4.5, an implementation
of Sun Microsystems’ J2EE plat-

form standard. Through
support for J2EE and other
new features, BEA WebLog-

ic Server 4.5 makes it easier for
companies to develop and
deploy transaction-based e-com-
merce applications. www.bea-
sys.com/weblogic.html

KL Group Releases JProbe
2.5 ServerSide Edition
(San Jose, CA) – KL Group Inc., a
leading provider of Java compo-
nents and advanced develop-
ment tools, has begun shipping
JProbe 2.5 ServerSide Edition.
The award-winning JProbe Suite

now offers enhanced
capabilities for perfor-

mance tuning, memory debug-
ging, code coverage and thread
analysis of Enterprise JavaBeans
and servlets running under pop-
ular application servers and Web
servers. www.klgroup.com

New Licensees for Insignia
Solutions’ Jeode Platform
(Fremont, CA) – Insignia Solu-
tions has announced that four
additional companies have
licensed the Jeode platform,
Insignia's faster implementation
of Sun's EmbeddedJava and Per-
sonalJava speci-
fications,
designed for
embedded devices. It’s also the
first independently developed
implementation to pass Sun’s
EmbeddedJava technology and
PersonalJava platform compati-
bility tests to earn the distinc-
tion of “Sun Authorized Virtual
Machine.” www.insignia.com

Sun Makes New Java
Claims Against MS
(San Jose, CA) – Sun Microsys-
tems Inc. attorneys say that
Microsoft Corp. found new ways
to circumvent a preliminary
injunction requiring Microsoft

products to comply with Sun's
Java even before the injunc-

tion was vacated by the
Ninth Circuit Court of
Appeals in August.

At a recent hearing Sun asked
U.S. District Judge Ronald Whyte
to reinstate the injunction based
on what Sun attorney Rusty Day
called “Microsoft's most recent
acts of unfair competition.” The
Appeals Court vacated the
injunction because it said Whyte
did not adequately show that
Microsoft violated Sun’s copy-
right, although the Court did
find that Microsoft likely
breached its contract.

Theory Center and
Navidec Partner
(Boston, MA) – The Theory Cen-
ter, Inc., a leading provider of
EJB component-based solutions,
has announced a partnership
with Navidec, Inc., a leading

provider of
innovative e-
business
solutions and
services.

Under the terms of the agree-
ment, Navidec will resell Theory
Center’s JumpStart product, a
pure EJB component-based soft-
ware product designed to help
companies build flexible,
Web-enabled applica-
tions in 30 days.
www.theorycenter.com
www.navidec.com

Free JDataStore
Development License
Available from Inprise
(Scotts Valley, CA) – Inprise Cor-
poration has announced JData-

Store, a pure Java database man-
agement system that delivers
platform independence and
portability in a small-footprint
package. JDataStore is available
free for download for a limited
time from Inprise’s Web site.
www.borland.com/jdatastore

SilverStream Software Creates
Partner Advisory Council
(Burlington, MA) – SilverStream
Software, Inc., has created a Part-
ner Advisory Council to provide its
VAR, consulting and training part-
ners with an interactive forum. The
council will meet quarterly to
share ideas
with Silver-
Stream on
planning for future product releas-
es and customer support programs
for its award-winning application
server. www.silverstream.com

Together/J Version 3 Released
(Raleigh, NC) – TogetherSoft
LLC, formerly Object Interna-
tional, released Together/J ver-
sion 3, delivering a host of new
features for visual UML develop-
ment across the enterprise.

Analysts,
architects,
designers and

developers can download the
free TJ Whiteboard edition from
www.togethersoft.com.

Y2K Liability Limits Pass
House, Head for Senate
(Washington, DC) –The House of
Representatives recently passed
HR 775 (236-190), the first bill
providing liability limits for Y2K-
related litigation. It now heads
for the Senate. National Associa-
tion of Computer Consultant
Businesses board member and
president of Commer-
cial Programming
Systems Al Strong
says, “The
NACCB’s position
is that liability
protection is
necessary, but
that damages awarded should
be limited to the value of the
work completed.”
www.cpsinc.com

SYS-CON Named America’s Fastest Growing
Publishing Company by Inc. Magazine

(Pearl River, NY) – SYS-CON
Publications, Inc., publisher of
Java Developer’s Journal, was
ranked 194th on Inc.’s list of
the 500 fastest-growing pri-
vately held companies in the
U.S.

SYS-CON Publications was the
only company in the publishing
industry to make it to this year’s
list, which, not surprisingly, was
dominated by computer-related
companies (46% of the 500).
www.inc.com/500

Pictured in SYS-CON offices June 1999 (l to r): Amanda Moskowitz, Ignacio Arellano, Christine Russell,
Jim Morgan, Fuat Kircaali, Robert Diamond, Nicholas De Jesus, Chad Sitler, Robin Groves, Mary Ann
McBride, Jaclyn Redmond, Megan Ring, Alex Botero, M’lou Pinkham, Cheryl Van Sise, Robyn Forma,
Carmen Gonzalez (not shown: Sian O’Gorman, Bruno Decaudin, Sean Rhody, Ajit Sagar, Alan Williamson,
Ann Marie Milillo, Scott Davison, Bahadir Karuv, Nancy Valentine, Aarathi Venkataraman, Digant Dave,
Eli Horowitz)

(Pearl River, NY) – SYS-
CON Radio and Java
Developer’s Journal
have been named
media cosponsors of
the third annual Java
Business Conference that
will take place at the
Jacob K. Javits Con-
vention Center in
New York City December 7–9.
According to publisher Fuat

Kircaali, “JDJ has been
participating at this
conference since its
inception, and we are
delighted to be media

cosponsors this year.”
This past June the publish-

ing firm and its radio
adjunct were also
media cosponsors of

JavaOne, the largest developer
conference of the year.

SYS-CON Radio/JDJ Media Cosponsor
of December Java Conference

95NOVEMBER 1999

Java COM

SilverStream
www.silverstream.com

Java COM

96 NOVEMBER 1999

KL Group
www.klgroup.com/.datasource

